## Documents

Categories
Published

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Share
Description
abcd
Transcript
Business Mathematics Formulae 1.Arithmetic Mean a.Ungrouped data  x xnn totalnumberof dataelements == ∑ b.Weighted Mean wx xww weightalloted tothedataelement  == ∑∑ c.Grouped dataDirect Method int  fm xn f frequencym mid pon f totalof all frequencies ==== = ∑∑ Shortcut Method   fd  xAn Aarbitraryorassumedmean  ffrequencyddeviationofmidptfromassumedmeannftotalofallfrequencies = +==== = ∑∑ Step Deviation Method ''  fd  x A C n A arbitraryorassumed mean f frequencyd stepdowndeviationof mid pt fromassumed meanC stepdownmultiplen f totalof all frequencies = + ×===== = ∑∑ d.Combined Mean  1 1 2 2121 21 21 2 & 1& 2& 1& 2 n x n x xn n x x meansof group groupn n numberof elementsingroup group +=+== .!he M D#A\$ a.Ungrouped Data 12 th n Forodd numberof items Valueof item Forevennumberof items Averagevalueof twomiddleitems +→→ b.Grouped Data 2 1112 ( )limlim12 l l  M l m c f   M medianl lower itof theclassinwhichmedianliesl upper itof theclassinwhichmedianlies f frequencyof themedianclassnmc cumulative frequencyof theclass preceding  −= + −====+== %.!he M&D Grouped Data 1 011 0 1 21102 ( ) ( )lim modmodmodmodint  f f   Mode l i f f f f  l lower itof classinwhich elies f frequencyof classinwhich elies f frequencyof class precedingthe alclass f frequencyof classsucceedingthe alclassi class erval  −= + ×− + −===== '.Geometric Mean 1 2 nn GMxxx = × ×−−−−− (.)armonic Mean Ungrouped Data  1 2 1 1 1 n n HM  x x x =+ +−−−−−−−−+ Grouped Data 1( ) ii n HM  f   x =× ∑ *.Mean Deviation Ungrouped Data | |  x x MDn −= Grouped Data | |  f d  MDn = ∑ +.Standard Deviation , -ariance Ungrouped Data 222 ( )( )  x xn x xn σ  σ   −=−= ∑∑ Simplied Formula /or Ungrouped Data 22222 iiii  x xn n x xn n σ  σ     = − ÷ ÷    = − ÷ ÷   ∑ ∑∑ ∑ Grouped Data 22 iiiiii  f x f x f f   σ     = − ÷ ÷   ∑ ∑∑ ∑ 0.Combined Standard Deviation  2 2 2 21 1 1 2 2 2121 2121 12 12 12 21 1 2 2121 2 ( ) ( ) n d n d n nCombined std devd x xd x xn x n x xn n σ σ  σ  σ   + + +=+== −= −+=+ .Coe2cient o/ -ariation 100% CV  x σ   = × 13. 4robabilit5 For mutuall5 e6clusive events ( ) ( ) ( )   Aor !  A  ! = + For non mutuall5 e6clusive events ( ) ( ) ( ) ( )   Aor !  A  !  Aand ! = + − #ndependent vents arg Pr ( )  M inal obability  A = intPr ( ) ( ) ( )   o obability A!  A  ! = × Pr ( / ) ( ) ( / ) ( ) Conditional obability A !  A or  ! A  ! = = Dependent vents arg Pr ( )Pr ( / ) ( )/ ( )( / ) ( )/ ( )intPr ( ) ( / )* ( )( ) ( / )* ( )  M inal obability  AConditional obability A !  A!  !  ! A  A!  A  o obability A!  A !  !  A!  ! A  A ===== Ba5es7 !heorem Let there be an event A, which can happen, only if one of the n  mutually exclusive events occur, then ( )  #umberof timeseventoccurs  event \$otalnumberof occrances = 1 2 3, , , ....... n  ! ! ! ! ( ) ( / )( / )( ) ( / ) iiiii  !A! !A !A! = ∑

Jul 23, 2017

#### Waldron-WavesOscillations_text.pdf

Jul 23, 2017
Search
Similar documents

View more...
Tags

Related Search