Documents

1.pdf

Description
Description:
Categories
Published
of 5
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  Math 546Homework 1 Due Wednesday, January 25. This homework has two types of problems. ã  546 Problems.  All students (students enrolled in 546  and   701I) are required to turn these in. ã  701I Problems.  Only students enrolled in 701I are required to turn these in. Students notenrolled in 701I are welcome to turn these in as well. I especially welcome students lookingfor a challenge to attempt these. Note:  Part 3 below contains solutions to some of the  unassigned   problems from Sections 1 and 2of Saracino’s text. I am providing these as examples of how to write solutions. Please have a look at these, and make sure to  read Sections 1 and 2  of the text. 1 546 Problems. 1.3and1.6.  Foreachofthefollowingsets S   andfunctions ∗ on S  × S  , determinewhether ∗ isa binary operation on  S  . If  ∗ is a binary operation on  S  , determine whether it is commutativeand whether it is associative. a)  S   = Z ,  a ∗ b  =  a  +  b 2 . e)  S   = Z ,  a ∗ b  =  a  +  b − ab . f)  S   = R ,  a ∗ b  =  b . g)  S   =  { 1 , − 2 , 3 , 2 , − 4 } ,  a ∗ b  =  | b | . 1.4.  Is division a commutative operation on R + ? Is it associative? Note:  If   S   ⊆ R , then we define  S  + =  { s  ∈  S   :  s >  0 } . 1.9.  Let  S   =  { a,b,c,d } . The following table defines a binary operation ∗ on  S  .Is ∗ commutative? Is it associative?* a b c da a c b db c a d bc b d a cd d b c a Note:  For  s 1 ,  s 2  ∈  S  , we define  s 1  ∗ s 2  to the be the element in the row that contains  s 1  andthe column that contains  s 2 . For example, we have  c ∗ b  =  d .  2.1.  Which of the following are groups? Why or why not? d)  The set { 1 , − 1 } under multiplication. f)  R × R =  { ( x,y ) :  x,y  ∈ R } under the operation  ( x,y ) ∗ ( z,w ) = ( x  +  z,y  − w ) . g)  R × R × =  { ( x,y ) :  x,y  ∈ R and  y   = 0 } under the operation ( x,y ) ∗ ( z,w ) = ( x  +  z,yw ) . Recall that R × = R \{ 0 } . h)  R \{ 1 } under the operation  a ∗ b  =  a  +  b − ab . 2.5.  Let  S   =  { a,b,c } . The following table defines a binary operation ∗ on  S  .* a b ca a b cb b b cc c c cIs  ( S, ∗ )  a group? Why or why not? 2.8.  Let  G  =  { f   : R → R :  for all  x  ∈ R , f  ( x )   = 0 } . For all  f  ,  g  ∈  G , define × by ( f   × g )( x ) =  f  ( x ) g ( x )  for all  x  ∈ R . Is  ( G, × )  a group? Prove or disprove. 2.11.  Let  G  =  a  00  b  :  a,b   = 0  in R  . Show that  G  forms a group under matrix multi-plication. 2 701I Problems. 1.10.  How many binary operations are there on a set  S   with  n  elements? How many of theseare commutative? 2.1 e)  Let  S   =  { q   ∈ Q + :  √  q   ∈ Q } ,  ∗ is × . Is  ( S, ∗ )  a group? Why or why not?  2.6.  Let  S   =  { a,b,c } . The following table defines a binary operation ∗ on S.* a b ca a b cb b a cc c b aIs  ( S, ∗ )  a group? Why or why not? 2.10.  Let G  =  M   =   a b − b a  :  a,b  ∈ R ,  det  M   =  a 2 +  b 2  = 0  ⊂  GL (2 , R ) . Let × denote ordinary matrix multiplication. Show that  ( G, × )  is a group. 3 Examples. 1.3and1.6.  Foreachofthefollowingsets S   andfunctions ∗ on S  × S  , determinewhether ∗ isa binary operation on  S  . If  ∗ is a binary operation on  S  , determine whether it is commutativeand whether it is associative. b)  S   = Z , a ∗ b  =  a ∗ b  =  a 2 b 3 . Claim:  ∗ is a binary operation on  S  . Proof:  For all  a ,  b  ∈ Z , we have  a ∗ b  =  a 2 b 3 ∈ Z , so ∗ is a binary operation. Claim:  ∗ is not commutative on  S  . Proof:  We note that  b  ∗  a  =  b 2 a 3 . Therefore, we have  a  ∗  b  =  b  ∗  a  if and only if  a 2 b 3 =  a 3 b 2 , which holds if and only if   a  =  b  or either of   a ,  b  = 0 . We observe that 1 ∗ 2 = 1 2 2 3 = 8   = 4 = 2 2 1 3 = 2 ∗ 1 . Hence, ∗ is not commutative. Claim:  ∗ is not associative on  S  . Proof:  We compute ( a ∗ b ) ∗ c  = ( a 2 b 3 ) ∗ c  = ( a 2 b 3 ) 2 c 3 =  a 4 b 6 c 3 ,a ∗ ( b ∗ c ) =  a ∗ ( b 2 c 3 ) =  a 2 ( b 2 c 3 ) 3 =  a 2 b 6 c 9 . Therefore, we have  ( a ∗ b ) ∗ c  =  a ∗ ( b ∗ c )  if and only if   a 4 b 6 c 3 =  a 2 b 6 c 9 , which holdsfor  a ,  b ,  c   = 0  if only if   a 2 =  c 6 . Taking square roots, we see that associativity followsif and only if   a  =  c 3 . We note that (2 ∗ 1) ∗ 1 = 2 4 1 6 1 3 = 16   = 4 = 2 2 1 6 1 9 = 2 ∗ (1 ∗ 1) . Hence, ∗ is not associative.  h)  S   =  { 1 , 6 , 3 , 2 , 18 } , a ∗ b  =  ab . Claim:  ∗ is not a binary operation on  S  . Proof:  We note that  6 ,  2  ∈  S  , but that  6  ∗  2 = 12  ∈  S  . Therefore,  ∗  is not a binaryoperation.Since  ∗  is not a binary operation, we do not consider whether or not  ∗  is commutativeor associative. 2.1.  Which of the following are groups? Why or why not? b)  S   = 3 Z =  { 3 n  :  n  ∈ Z } , the set of integers that are multiples of   3 ,  ∗ is  + . Claim:  ( S, ∗ )  is a group. Proof:  It suffices to verify the axioms:(i)  ∗ is a binary operation on  S  . To see this, let  a  = 3 x ,  b  = 3 y  ∈  3 Z . Then we have a  +  b  = 3 x  + 3 y  = 3( x  +  y )  ∈  3 Z , so ∗ is a binary operation on  S  .(ii)  ∗  is associative on  S  . Since  S   = 3 Z  ⊂  Z , we see that  3 Z  inherits associativityunder  +  from Z .(iii)  ( S, ∗ )  has an identity. We claim that  0 = 3 · 0  ∈  3 Z is an identity for  ( S, ∗ ) . To seethis, let  a  = 3 x  ∈  3 Z . Then we have a  + 0 = 3 x  + 0 = 3 x  = 0 + 3 x  = 0 +  a, so  0  is an identity for  ( S, ∗ ) .(iv)  ( S, ∗ )  has inverses. To see this, let  a  = 3 x  ∈  3 Z . Then − a  =  − 3 x  = 3( − x )  ∈  3 Z has − a  +  a  = 0 =  a  + ( − a ) , so − a  is an inverse for  a .It follows that  ( S, ∗ )  is a group. Furthermore,  ( S, ∗ )  inherits commutativity from  Z since  S   ⊆ Z , so  ( S, ∗ )  is an abelian group. i)  S   = Z , a ∗ b  =  a  +  b − 1 . Claim:  ( S, ∗ )  is a group. Proof:  It suffices to verify the axioms.(i)  ∗ is a binary operation on  S  . To see this, let  a ,  b  ∈ Z . Then we have a ∗ b  =  a  +  b − 1  ∈ Z , so ∗ is a binary operation on  S  .(ii)  ∗ is associative on  S  . To see this, let  a ,  b ,  c  ∈ Z . Then we have ( a ∗ b ) ∗ c  = ( a  +  b − 1) ∗ c  = ( a  +  b − 1) +  c − 1 =  a  + ( b  +  c − 1) − 1=  a ∗ ( b  +  c − 1) =  a ∗ ( b ∗ c ) , so ∗ is associative on  S  .

2588A

Sep 10, 2019

BC First Part

Sep 10, 2019
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x