Magazines/Newspapers

BBOT for applications in photovoltaic cells devices and organic diodes

Description
BBOT for applications in photovoltaic cells devices and organic diodes
Published
of 4
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  BBOT   for   applicationsin   photovoltaiccellsdevices   andorganic   diodes G.   Lewi  nska*,A.Puszy  nski,    J.   Sanetra* InstituteofPhysics,Cracow   UniversityofTechnology,1PodchorazychStr.,    30-035Krakow,Poland A   R    T   IC   L    E   INF   O  Article   history: Received   30    June   2014Received   in   revised   form   2November   2014Accepted   11   November   2014Available   online   16   December   2014 Keywords: FluorescentBulk-heterojunction   cellOrganic   photomaterials AB   STR    A   CT Inthis   workphotovoltaicdevicesbasedon   the fl uorescentbrightener184preparingandfeatureswaspresented.Thebrightenerwas   amajorcomponentof    theactive   layersof    devices,in   whichwasusedtheselectedmatrix.   Thestudyincludedaretheresultsfortheperformedlight   emittingdiodesbasedonarchitectureITO/PEDOT:PSS/organicactivelayer/calcium/aluminum,wesetthecharacteristicsof thediodes.Themainaimof    thestudy   wastheuseoftheBBOTcompoundfortheconstructionof photovoltaiccells.We   have   madeanumberof    devicesbulk-heterojunctiontypecellsbasedonarchitectureITO/PEDOT:PSS/organicactivelayer/aluminuminvariouscon fi gurationsconcentrationsandwithdifferentthicknessesof    theactivelayers.Wehave   analyzedthecurrent – voltage   characteristicsofphotovoltaiccellsanddeterminedparametersof    photovoltaiccells. ã 2014ElsevierB.V.Allrightsreserved. 1.Introduction Inrecent   years,   because   of    the   advantages   of    organicphotovoltaic   devices,   its   research   are   developed.   As   the   fi rstgeneration   of    cells   is   determined   mainly    p – n    junction   producedfromhighly   pure   silicon   crystalline   wafer   thickness   of    about200 – 300   microns.   They   are   characterized   bya “ high ” ef  fi ciencytypically   17 – 22%aswell   as   the   high   costs   of    production   [1].   Thesecondgeneration   was   built   using   materials:   cadmium   telluride(CdTe)[2],   a   mixture   of    copper,   indium,   gallium,   selenium   (CIGS)[3,4]   and   amorphous   silicon   [5,6].   The   characteristic   feature   is   thesmall   thickness   of    the   light-absorbing   layer.   Dye   solar   cell   are   nowreferred   to   as   third-generation   solar   cells,   next   to   the   polymer   andorganic   solar   cells   developed   since   1968[7 – 12].   There   are   stillsearched   new   technologies   and   architectures,   are   also   constantlytested   new   compounds.   Increasingly   popular   are   also   dye   solarcells.   An   important   publication   solar   cells   was   [13],   since   then   werecarried   research   on   this   subject   dye   solar   cells   based   on   the   varioustechniques   and   materials   architectures   among   others   [14 – 16].The   fi rst   cell   received   has   reached   quantum   ef  fi ciency   of    1%,   ina   further   ef  fi ciency   increased   by2 – 4%   [17],up   to   now   achieved11 – 13%[18,19].   On   the   other   hand,   cells   based   on   natural   dyes   stillachieve   quantum   ef  fi ciency   approximately   1%[20]. 2.   Materials,   preparation   and   architecture The   substance   2,2 0 -(2,5-thiophenediyl)bis[5-(1,1-dimethy-lethyl)also   known   as   BBOT   was   used   asa   base   for   photovoltaicapplications.   Thecompound   is   also   known   under   the   trademarkssUvitexOB,   Bentex   OBand   Fluorescent   Brightener   184.   Thesubstance   has   been   the   subject   of    many   studies   [21,22].   BBOTmolecule   is(structure   presented   in   the   Fig.1)   elongated   ellipsoid   of awidth   2.7Å   and   length   12.5   Å   [23].   Due   to   the   use   of    photovoltaicare   the   most   interesting   for   the   absorption   maxima   and   relatedmixtures   and   the   HOMO   LUMO   levels.   Considered   material   wereused   as   electron   acceptor.   The   substance   was   provided   byHollindiaPolska   Sp.   z   o.ocompany,   itisa   commercial   dye   sample.The   bulk-heterojunction   cells   havebeen   produced   usingITO/PEDOT:PSS/organic   active   layer/aluminum   (Al)   architecture,the   light   emitting   diodes   were   performed   based   on   ITO/PEDOT:PSS/organic   active   layer/calcium   (Ca)/aluminum   (Al)   architecture.Devices   were   made   on   aglass   substrate   coated   with   ITO(indium   oxide   solid   solution   (III)   oxideand   tin   (IV)),   provided   byAldrich   Chem   Co.,   about   100   nm   thick,   which   was   a   transparentelectrode.   The   second   electrode   in   PV   cells   was   aluminum,deposited   on   a   prepared   sample   in   a   high   vacuum   (10  6 bar).   Intheelectroluminescent   diodes   as   the   negative   electrode   of    calcium(Ca)   on   the   work   function   of     3.2   eV   was   used.   Itwas   covered   withalayer   of    aluminum   to   prevent   calcium   oxidation   .   On   the   ITO   layerwas   spinned   (spin-coating   method)   an   additional   layer   of    PEDOT:PSS   (poly(3,4-ethylendioxythiohene)-polystyrene-para-sulfonicacid),   for   convenience   transportation   charge   carriers   toITO.   Thelayerwas   heated,   and   then   the   active   layer   was   imposed.   The   activelayer   in   heterojunction   bulk   cells   was   a   mixture   of    Uvitex   OB   acting *Corresponding   author. E-mail   address:   gabriela.lewinska.pk@gmail.com   (G.   Lewi  nska).http://dx.doi.org/10.1016/j.synthmet.2014.11.0130379-6779/ ã   2014   Elsevier   B.V.   All   rights   reserved.Synthetic   Metals   199(2015)   335 – 338 Contents   lists   available   at   ScienceDirect Synthetic   Metals journal   homepage:   www.elsevier.com/locate/sy   nmet  as   acceptor   and   donor   –   poly(3-hexylthiophene)   designated   asP3HT   (Aldrich   Chem   Co.).   Poly( N  -vinylcarbazole)   designated   asPVK   conducting   polymer   was   used   asthe   polymer   matrixelectroluminescent   diodes.   BBOT   concentration   in   the   matrix   isabout   1%.   Applying   layers   proceeded   asin   the   case   heterojunction-bulk   cells.   The   solvent   (spectral   chloroform)   was   vaporized   in   avacuum   oven   (for   each   layer)   (Fig.   2).  2.1.The   electroluminescent     properties The   photoluminescence   spectra   show   a   maximum   photo-luminescence   spectra   show   a   maximum   450 – nm,   for   the   mixtureofPVK   and   BBOT   there   are   peaks   at   400   nm   and   500nm   [24].The   absorption   spectrum   exhibits   two   peaks   at   358   and   373   nm.[25].   The   HOMO   LUMO   levels   for   BBOT   are    6.29   and    3.16,respectively   [26]   (Fig.   3).Based   on   the   diagram   HOMO   LUMO,   according   to   which   thedifference   in   HOMO   level   is   about   1eV   and   the   LUMO   levels   of    0.1,it   can   be   concluded   thatthe   transport   of    electrons   and   holes   willtobe   successful.  2.2.   Light-emitting    diodes Single   layer   light   emitting   diodes   were   prepared.   This   kind   of devices   were   previously   prepared   by   [29],[30],   [31].   For   devicesperformed   determined   current – voltage   characteristics   andelectroluminescence – voltage.   Thecurrent – voltage   were   measuredusing   a   current   source   Keithly   2400   SourceMeter   and   Keithly6487Picoammeter   Voltege   Source.   Photodiode   HamamatsuS1337-BQ    electroluminescence   intensity   measurements   wereperformed.Diode   turn-on   voltage   of    diodes   was   about   4.2   V.   Theelectroluminescence   maximum   peak   is   located   in   the   wavelength490nm   (greenish-blue   light)   (Figs.   4   and   5).  2.3.   Bulk-heterojunction   cells They   were   made   bulk-heterojunction   cell   type.   The   material   forthe   active   layer   was   prepared   in   the   two   types   of    proportions   byweight   of    the   BBOT   and   P3HT,   thatis   1:2   and   1:1.   For   each   of    these Fig.1.   Molecular   chemical   formula   for   (a)   BBOT,   (b)P3HT,   (c)PVK,   (d)   PEDOT,   (e)PSS. Fig.   2.   Architecture   ofphotovoltaic   cell:   (a)   ITO/PEDOT:PSS/Organic   active   layer/Aluminum   and(b)   organic   diode   ITO/PEDOT:PSS/Organic   active   layer/Calcium/Aluminum. Fig.   3.   HOMO   LUMO   levels   diagram   for   examined   compounds   (a)PV   heterojunctioncell(b)   LED.Work   function   forelectrodes   taken   [27],   P3HT   [28].336 G.   Lewi  nska   etal.    /Synthetic    Metals   199   (2015)    335 –  338  mixtures   active   layer   were   applied   using   four   different   speeds   inspin   coater   method.   The   thickness   of    the   layers   was   determinedusing   the   ellipsometer   VASE 1 Ellipsometer   with   the   includedsoftware.   The   measurement   was   performed   using   probes   focus.Measurement   uncertainty   is   about   5nm,   the   MSE   (mean   squareerror)   less   than   3(Fig.   6).The   photocurrent   density – voltage   characteristics   for   prepareddevices   were   measured   with   a   Keithley   2400source   duetopicoamperemeter.   To   illuminate   the   cells   was   used   lamp   (lamppower   (Plight)   is   approximately   1.3   mW/cm 2 ).   For   the   character-istics   of    the   received   polynomial   curve   fi tting   and   calculatedparameters   of    the   cell.).   Parameters   describing   the   photovoltaiccells   are   following:   short   current   density   (Isc),   open   circuit   voltage(Uoc),   fi ll   factor   (FF)   de fi ned   as FF    ¼ I  m V  m I  SC V  OC and   conversion   ef  fi ciency   ( h ) h   ¼ P  max P  light P  max  is   maximum   power   of    the   cell.The   summary   is   in   Tables   1and   2.Model   dependency   between   the   molar   weight   of    the   acceptorand   donor   is   1:1.In   the   examined   case   thisrelationship   has   beencon fi rmed.   Inthe   fi rst   case   (proportion   1:2)   ef  fi ciency   increasewith   a   decrease   inthe   thickness   of    the   layer.   In   the   donor:acceptorweight   relation   1:1   case   the   ef  fi ciencies   are   generally   higher.Device   reaches   a   maximum   ef  fi ciency   is   the   one   with   the   activelayer   thickness   about   149   nm   ( P  max  14.3   m W). 3.Summary  BBOT   ismultifunctional   material,   ready   tophotovoltaicapplications.   Previous   results   for   LEDs   have   been   veri fi ed Fig.   4.   The   current – voltage   and   electroluminescence – voltage   characteristics   forBBOT   based   diode. Fig.   5.   The   electroluminescence   spectra   for   BBOT   based   diode. Fig.   6.   The   photocurrent   density – voltage   characteristics   for   prepared   devices(a)   BBOT:P3HT   proportion   1:2,   (b)   BBOT:P3HT   proportion   1:1.  Table   1 BBOT   +   P3HT   1:2   thickness(nm) I  SC  ( m A/cm 2 ) U  oc (V) FF  h (%) P  max ( m W)1200   36.89   0.53   0.22   0.33   4.292177   60.67   0.65   0.20   0.60   7.893155   71.94   0.65   0.20   0.719,394130   72.00   0.710.22   0.84   11.08  Table   2 BBOT   +   P3HT   1:1   thickness(nm) I  SC  ( m A/cm 2 ) U  oc (V) FF    h (%) P  max  ( m W)5186   82.41   0.60   0.22   0.84   11.06615495.03   0.71   0.21   1.08   14.17713997.60   0.67   0.22   1.09   14.298112   67.890.63   0.22   0.72   9.49 G.Lewi  nska   et    al.    /    Synthetic    Metals   199   (2015)    335 –  338   337  and   con fi rmed.   Electroluminescence   maximum   also   has   beenachieved.Fordevices   with   weight   ratios:   BBOT   to   P3HT   2:1,   respectivelyperformance   was   obtained   in   the   range   of    0.31 – 0.84.   Forsystems   with   an   aspect   ratioBBOT:P3HT   1:1   Cell   ef  fi ciency   wasfrom0.72   to   1.09.The   maximum   conversion   ef  fi ciency   isobtained   in   both   cases   for   the   active   layer   of    about   130 – 140   nm.Cell   ef  fi ciency   is   notimpressive.   Obtained   quantum   ef  fi ciencyof    the   photovoltaic   cell   at   a   level   typical   of    natural   dyes.Achievedquantum   ef  fi ciency   is   better   than   previous   ones   [31,32].Itshouldbe   noted   that   the   dye   was   used   commercially   available.   Precisesynthesis   and   chemical   purity   increase   would   improve   the   systemparameters. References [1]   A.W.   Blakers,   A.   Wang,   A.M.Milne,    J.Zhao,   M.A.   Green,   Appl.   Phys.   Lett.   55(1363)   (1989)   ,   doi:http://dx.doi.org/10.1063/1.101596.[2]T.L.   Chu,   Sol.   Cells   23   (1 – 2)   (1988)   31 – 48.[3]N.   Naghavi,   S.   Spiering,   M.   Powala,B.   Cavana,   D.   Lincot,   Prog.   Photovoltaics   Res.Appl.11   (7   (November))   (2003)   437 – 443.[4]R.   Wuerza,   A.   Eickea,   M.   Frankenfelda,   F.   Kesslera,   M.Powallaa,   P.Roginb,O.Yazdani-Asslb,   Thin   Solid   Films   517(7   (2February))   (2009)   2415 – 2418,   doi:http://dx.doi.org/10.1016/j.tsf.2008.11.016.[5]W.   Paul,   D.A.   Anderson,   Sol.Energy   Mater.   5(3   (September))   (1981)   229 – 316.[6]   E.   Carlson,   C.R.   Wronski,   Appl.   Phys.Lett.   28   (671)   (1976)   ,   doi:http://dx.doi.org/10.1063/1.88617.[7]C.W.   Tang,   Appl.   Phys.   Lett.   48   (183)(1986)   ,   doi:http://dx.doi.org/10.1063/1.96937.[8]   S.   Calus,   Opt.   Commun.   268(2006)   64 – 74.[9]   S.   Calus,   Opt.   Commun.   271(2007)   16 – 23.[10]   K.S.   Danel,   Spectrochim.   Acta   A   77   (2010)   16 – 23.[11]E.   Gondek,   Spectrochim.   Acta   A69   (2008)   22 – 26.[12]H.K.    Junet,   Op.   Mater.   36   (1)   (2013)   151 – 158.[13]   B.   O ’ Regan,   M.Grätzel,   Nature   353   (24   October)   (1991)   737 – 740,doi:http://dx.doi.org/10.1038/353737a0.[14]P.   Singh,   A.Baheti,   K.R.J.   Thomas,   -P.Ch.Lee,   K.   -Ch.   Ho,   Dyes   Pigm.   95   (2012)523 – 533.[15]    J.-G.   Chena,   R.   Vittala,   M.-H.   Yeha,   -Y.   Ch.   Chen,   -G.   Ch.   Wub,Kuo-Ch.   Hoa,Electrochim.   Acta   130   (2014)   587 – 593.[16]M.A.K.L.   Dissanayake,   H.K.D.W.M.N.R.   Divarathne,   C.A.   Thotawatthage,C.B.   Dissanayake,   G.K.R.   Senadeera,   B.M.R.   Bandara,   Electrochim.   Acta130   (2014)   70 – 81.[17]   H.   Tributsch,   Photochem.   Photobiol.   16   (1972)   261 – 269.[18]   Y.   Chiba,   A.Islam,   Y.   Watanabe,   R.   Komiya,   N.Koide,   L.Y.Han,Jpn.    J.Appl.   Phys.45(2006)   L638 – L640,   doi:http://dx.doi.org/10.1143/JJAP.45.L638.[19]S.   Mathew,   A.   Yella,   P.Gao,R.   Humpry-Baker,   B.F.E.   Curchod,   Ne.   Ashari-Astani,I.Tavernelli,   U.   Rothlisberger,   Md.   KhajaNazeeruddin,   M.Grätzel,   Nature   Chem.6(2014)   242 – 247,doi:http://dx.doi.org/10.1038/nchem.1861.[20]   H.   Zhou,   L.Wu,   Y.   Gao,   T.   Ma,    J.Photochem.   Photobiol.   A   Chem.   219(2 – 3(15   April))   (2011)   188 – 194,   doi:http://dx.doi.org/10.1016/j. jphotochem.2011.02.008.[21]   G.R.   Fleming,   A.E.W.   Knight,    J.M.   Morris,   R.J.Robbins,   G.W.   Robinson,Dissanayake,   G.K.R.   Senadeeraa,   B.M.R.   Bandara,   Electrochim.   Acta   130(2014)   76 – 81.[22]E.   Klampaftis,   D.   Ross,   K.R.   McIntosh,   B.S.   Richards,   Sol.   Energy   Mater.   So.   Cells93(2009)   1182 – 1194.[23]    J.R.   Mannekutla,   P.Ramamurthy,   B.G.   Mulimani,   S.R.   Inamdar,   Chem.   Phys.   340(2007)149 – 157.[24]   R.   Zhang,   H.   Zheng,    J.Shen,   Synth.   Mater.   132   (2003)   285 – 288.[25]   G.   Tury,   R.Vabrik,   I.   Kasab,   K.   Papp,   I.   Ruszak,   G.T.   Szabo,   A.Vigd,   E.   Kalman, J.Photochem.   Photobiol.   A   Chem.   114   (1998)   51I – 558.[26]   R.   Zhang,   H.   Zheng,    J.Shen,   Synth.   Met.   105   (1999)   49 – 53.[27]B.   Luszczynska,   E.Dobruchowska,   I.   G ł owacki,    J.   Ulanski,   F.    Jaiser,   X.   Yang,D.Neher,   A.Danel,    J.Appl.   Phys.   99   (2006)   024505.[28]Sigma   Aldrich 1 Online   Catalog,   online   access:   12.05.2014   http://www.sigmaaldrich.com/catalog/product/aldrich/445703?lang=pl 1 ion=PL.[29]    J.   Yang,   K.C.   Gordon,   Chem.   Phys.   Lett.   375   (2003)   649 – 654.[30]   W.   Zhu,   X.    Jiang,   Z.   Zhang,    J.Shanghai   Univ.   (Engl.   Ed.)   10   (2)   (2006)   156 – 160.[31] J.    Jaglarz,   A.   Kassiba,   P.   Armatys,   M.   Pokladko,   E.   Gondek,    J.Sanetra,   Mater.   Sci.Poland   22   (4)   (2004)   .[32]   M.   Grucela-Zajac,    J.   Phys.   Chem.   C   118   (24)   (2014)   13070 – 13086,   doi:http://dx.doi.org/10.1021/jp501168b.338   G.   Lewi  nska   etal.    /Synthetic    Metals   199   (2015)    335 –  338
Search
Similar documents
View more...
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x