Documents

hidrocarburos_a13_227

Description
Description:
Categories
Published
of 58
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
   2012 Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim Hydrocarbons K ARL  G RIESBAUM ,  Universit € at Karlsruhe (TH), Karlsruhe, Federal Republicof Germany A RNO  B EHR ,  Henkel KGaA, D € usseldorf, Federal Republic of Germany D IETER  B IEDENKAPP ,  BASF Aktiengesellschaft, Ludwigshafen, Federal Republicof Germany H EINZ -W ERNER  V OGES ,  H € uls Aktiengesellschaft, Marl, Federal Republic of Germany D OROTHEA  G ARBE ,  Haarmann & Reimer GmbH, Holzminden, Federal Republicof Germany C HRISTIAN  P AETZ ,  Bayer AG, Leverkusen, Federal Republic of Germany G ERD  C OLLIN ,  R € uttgerswerke AG, Duisburg, Federal Republic of Germany D IETER  M AYER ,  Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany H ARTMUT  H € o KE ,  R € uttgerswerke AG, Castrop-Rauxel, Federal Republic of Germany 1. Saturated Hydrocarbons  . . . . . . . . . . . . 134 1.1. Physical Properties  . . . . . . . . . . . . . . . . 134 1.2. Chemical Properties  . . . . . . . . . . . . . . . 134 1.3. Production . . . . . . . . . . . . . . . . . . . . . . . 1341.3.1. From Natural Gas and Petroleum . . . . . . . 1351.3.2. From Coal and Coal-Derived Products . . . . . 1381.3.3. By Synthesis and by Conversion of otherHydrocarbons . . . . . . . . . . . . . . . . . . . . . 139 1.4. Uses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 1.5. Individual Saturated Hydrocarbons  . . . 142 2. Olefins  . . . . . . . . . . . . . . . . . . . . . . . . . . 144 2.1. Monoolefins  . . . . . . . . . . . . . . . . . . . . . . 1442.1.1. Properties . . . . . . . . . . . . . . . . . . . . . . . . 1452.1.2. Production of Higher Olefins . . . . . . . . . . 1452.1.2.1. Production from Paraffins . . . . . . . . . . . . 1462.1.2.2. Oligomerization of Lower Olefins . . . . . . 1492.1.3. Uses of Higher Olefins. . . . . . . . . . . . . . . 1542.1.4. Economic Aspects of Higher Olefins . . . . 157 2.2. Dienes and Polyenes . . . . . . . . . . . . . . . . 1572.2.1. Low Molecular Mass 1,3-Dienes . . . . . . . 1572.2.2. Synthesis of Dienes and Polyenes byOligomerization. . . . . . . . . . . . . . . . . . . . 1582.2.3. Synthesis of Dienes and Polyenes byMetathesis. . . . . . . . . . . . . . . . . . . . . . . . 159 3. Alkylbenzenes  . . . . . . . . . . . . . . . . . . . . 160 3.1. Trimethylbenzenes . . . . . . . . . . . . . . . . . 160 3.2. Tetramethylbenzenes . . . . . . . . . . . . . . . 161 3.3. Penta- and Hexamethylbenzene . . . . . . . 162 3.4. Diethylbenzenes  . . . . . . . . . . . . . . . . . . . 162 3.5. Triethylbenzenes and More HighlyEthylated Benzenes  . . . . . . . . . . . . . . . . 162 3.6. Ethylmethylbenzenes (Ethyltoluenes) . . . 163 3.7. Cumene  . . . . . . . . . . . . . . . . . . . . . . . . . 163 3.8. Diisopropylbenzenes  . . . . . . . . . . . . . . . 164 3.9. Cymenes; C 4 - and C 5 -AlkylaromaticCompounds  . . . . . . . . . . . . . . . . . . . . . . 165 3.10. Monoalkylbenzenes with Alkyl Groups > C 10  . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 3.11. Diphenylmethane . . . . . . . . . . . . . . . . . . 167 4. Biphenyls and Polyphenyls  . . . . . . . . . . 168 4.1. Biphenyl . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.2. Terphenyls . . . . . . . . . . . . . . . . . . . . . . . 171 4.3. Polyphenyls  . . . . . . . . . . . . . . . . . . . . . . 172 5. Hydrocarbons from Coal Tar  . . . . . . . . 172 5.1. Acenaphthene  . . . . . . . . . . . . . . . . . . . . 172 5.2. Indene  . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.3. Fluorene . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.4. Fluoranthene  . . . . . . . . . . . . . . . . . . . . . 176 5.5. Phenanthrene . . . . . . . . . . . . . . . . . . . . . 177 5.6. Pyrene  . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6. Toxicology and Occupational Health . . . 179 6.1. Alkanes  . . . . . . . . . . . . . . . . . . . . . . . . . 179 6.2. Alkenes  . . . . . . . . . . . . . . . . . . . . . . . . . 180 6.3. Alkylbenzenes  . . . . . . . . . . . . . . . . . . . . 180 6.4. Biphenyls and Polyphenyls  . . . . . . . . . . 181 6.5. Hydrocarbons from Coal Tar  . . . . . . . . 1816.5.1. Biological Effects . . . . . . . . . . . . . . . . . . 1816.5.1.1. Carcinogenicity and Mutagenicity . . . . . . 1816.5.1.2. Mammalian Toxicity and Toxicokinetics . 1826.5.1.3. Ecotoxicology. . . . . . . . . . . . . . . . . . . . . 1826.5.2. Safety Regulations. . . . . . . . . . . . . . . . . . 182 References  . . . . . . . . . . . . . . . . . . . . . . . 182 DOI: 10.1002/14356007.a13_227  1. Saturated Hydrocarbons The class of saturated hydrocarbons comprises amyriadofindividualcompounds.Alargenumberof the theoretically possible saturated hydrocar-bons is known [1], although only a limited num-berofindividualsaturatedhydrocarbonsareusedas raw materials in the chemical industry. 1.1. Physical Properties Saturated hydrocarbons are colorless nonpolarsubstances, immiscible with polar solvents, butmiscible with many nonpolar organic solvents.Some physical properties are given in Table 1.The boiling points and, starting with C 3 , meltingpoints of   n -alkanes increase with increasing mo-lecularmass.At20   Candatmosphericpressure,C 1 toC 4 n -alkanesaregases,C 5 toC 16 areliquid,and from C 17  solid.  i -Alkanes do not display adefinite correlation between the number of car-bon atoms and their boiling- and melting points.The boiling points of   i -alkanes all are lower thanthose of the corresponding  n -alkanes; this is alsotrueformanyofthemeltingpoints.Furthermore,the boiling points of isomeric alkanes decreasewith increasing degree of branching. The boilingpoints and melting points of cycloalkanes aregenerally higher than those of   n -alkanes havingthe same number of carbon atoms (Table 1).The density of the saturated hydrocarbons inthe liquid state at 20   C is  < 1 g/cm 3 ; it variesfrom 0.6 g/cm 3 for compounds with low carbonnumbers to 0.8 g/cm 3 for compounds with highcarbon numbers (Table 1). Additional physicalproperties are compiled in Tables 2–5. 1.2. Chemical Properties Alkanes and cycloalkanes are saturated, nonpolar,andlackfunctionalgroups;suchhydrocarbonscanundergo reaction only after cleavage of C  H orC  C bonds. Consequently, the scope of primaryreaction steps is essentially limited to dehydroge-nation, substitution, and chain- or ring cleavage.Saturated hydrocarbons cannot undergo additionreactions,whichrepresentaversatilesynthetictoolfor unsaturated hydrocarbons (see Chap. 2). Mostindustrial reactions involving saturated hydrocar-bons are radical reactions, e.g., thermal cracking,oxidation, sulfoxidation, halogenation, sulfochlor-ination, and nitration. Industrial ionic reactions of saturated hydrocarbons are restricted to acid-catalyzed processes with strong acids. Such reac-tions are employed mainly in the processing of petroleumbycatalyticcracking,isomerization,andalkylation;theyyieldcomplexmixturesofproducts.Otherionicreactionsofsaturatedhydrocarbonscanbecarriedoutwithsuperacids(e.g.,FSO 3 H – SbF 5 ,HF – SbF 5 ): the alkylation of alkanes by alkanes[3], alkylation of benzene by alkanes [3], and ionicchlorination[5]andbromination[6]ofalkaneshavebeenexplored,butarenotusedindustrially(seealso !  Acylation and Alkylation).Reactions of saturated hydrocarbons, becauseofthelackoffunctionalgroups,arenonselective,with respect to both the region of attack (regios-electivity) and the number of reaction sites (de-gree of substitution), unless the molecule pos-sesses specific structural features, e.g., tertiaryhydrogen atoms. Such reactions frequently af-ford mixtures of isomeric or structurally analo-gous compounds which can only be separatedwith difficulty or not at all.On the basis of free enthalpy of formation (seeTable 2) most of the saturated hydrocarbons arethermodynamically unstable with respect to theelementscarbonandhydrogen.Theyare,however,kineticallystableatambienttemperature.Thermaldecompositionofsaturatedhydrocarbonsproceedsstepwise by loss of hydrogen or hydrocarbonfragmentswithconcomitantformationofindustri-ally useful unsaturated cracking products, such asacetylene, olefins, or aromatic hydrocarbons.On ignition, mixtures of saturated hydrocar-bonsandoxygenorairmayleadtocombustionorexplosion,dependingontheratioofhydrocarbonandoxygen.Suchreactionscanbeinitiatedeitherby imposed ignition or, if the ignition tempera-ture of the mixture is exceeded, by self-ignition.These reactions are the basis for the use of hydrocarbons as heating- and engine fuel. Perti-nent fuel properties of individual saturated hy-drocarbons are summarized in Table 4. 1.3. Production By far the largest amount of saturated hydrocar-bons is obtained from the natural sources  naturalgas  and  petroleum , either by isolation or bysuitable conversion reactions. Additional sources 134 Hydrocarbons Vol. 18  include various products derived from coal pro-cessing. A number of saturated hydrocarbons,unavailable from natural sources, are producedby special synthesis or by conversion processes. 1.3.1. From Natural Gas and Petroleum  Natural Gas  contains methane as the singlemajor component (see also  !  Methane;  ! Table 1.  Physical properties of saturated hydrocarbons [2]Compound EmpiricalformulaCAS registrynumber mp,   C  bp,   C  h  (20   C),mPa    s r  (20   C),g/cm 3 n 20D Methane CH 4  [ 74-82-8 ]   182.5 a  161.5Ethane C 2 H 6  [ 74-84-0 ]   183.27 a   88.6Propane C 3 H 8  [ 74-98-6  ]   187.69 a   42.1 0.5005 b Cyclopropane C 3 H 6  [ 75-19-4 ]   127.4    32.8 n -Butane C 4 H 10  [ 106-97-8 ]   138.4    0.5 0.5788 b 1.3326 b Cyclobutane C 4 H 8  [ 287-23-0 ]    90.7 12.5 0.6943 b 1.365 a 2-Methylpropane C 4 H 10  [ 75-28-5 ]   159.6    11.7 0.5572 b n -Pentane C 5 H 12  [ 109-66-0 ]   129.7 36.1 0.234 0.62624 1.35748Cyclopentane C 5 H 10  [ 287-92-3 ]    93.9 49.3 0.438 0.74538 1.406452-Methylbutane C 5 H 12  [ 78-78-4 ]   159.9 27.9 0.224 0.61967 1.353732,2-Dimethylpropane C 5 H 12  [ 463-82-1 ]    16.6 9.5 0.5910 b 1.342 b n -Hexane C 6 H 14  [ 110-54-3 ]    95.3 68.7 0.3117 0.65937 1.374862-Methylpentane C 6 H 14  [ 107-83-5 ]   153.7 60.3 0.65315 1.371453-Methylpentane C 6 H 14  [ 96-14-0 ] 63.3 0.66431 1.376522,2-Dimethylbutane C 6 H 14  [ 75-83-2 ]    99.9 49.7 0.64916 1.368762,3-Dimethylbutane C 6 H 14  [ 79-29-8 ]   128.5 58.0 0.66164 1.37495 n -Heptane C 7 H 16  [ 142-82-5 ]    90.6 98.4 0.4169 0.68376 1.387642-Methylhexane C 7 H 16  [ 591-76-4 ]   118.3 90.1 0.67859 1.384853-Methylhexane C 7 H 16  [ 589-34-4 ] 91.9 0.68713 1.388643-Ethylpentane C 7 H 16  [ 617-78-7  ]   118.6 93.5 0.69816 1.393392,2-Dimethylpentane C 7 H 16  [ 590-35-2 ]   123.8 79.2 0.67385 1.382152,3-Dimethylpentane C 7 H 16  [ 565-59-3 ] 89.8 0.69508 1.391962,4-Dimethylpentane C 7 H 16  [ 108-08-7  ]   119.2 80.5 0.67270 1.381453,3-Dimethylpentane C 7 H 16  [ 562-49-2 ]   134.46 d  86.1 0.69327 1.390922,2,3-Trimethylbutane C 7 H 16  [ 464-06-2 ]    24.9 80.9 0.69011 1.38944 n -Octane C 8 H 18  [ 111-65-9 ]    56.8 125.7 0.5450 0.70252 1.397432-Methylheptane C 8 H 18  [ 592-27-8 ]   109.0 117.6 0.69792 1.394943-Methylheptane C 8 H 18  [ 589-81-1 ]   120.5 118.9 0.70582 1.398484-Methylheptane C 8 H 18  [ 589-53-7  ]   121.0 117.7 0.70463 1.397922,2,3-Trimethylpentane C 8 H 18  [ 564-02-3 ]   112.3 109.8 0.71602 1.402952,2,4-Trimethylpentane C 8 H 18  [ 540-84-1 ]   107.4 99.2 0.69193 1.391452,3,3-Trimethylpentane C 8 H 18  [ 564-02-3 ]   100.7 114.8 0.72619 1.407502,3,4-Trimethylpentane C 8 H 18  [ 565-75-3 ]   109.2 113.5 0.71906 1.404222,2,3,3-Tetramethylbutane C 8 H 18  [ 594-82-1 ]   100.7 106.5 n -Nonane C 9 H 20  [ 111-84-2 ]    53.5 150.8 0.7139 0.71763 1.40542 n -Decane C 10 H 22  [ 124-18-5 ]    29.7 174.1 0.9256 0.73005 1.41189 n -Undecane C 11 H 24  [ 1120-21-4 ]    25.6 195.9 1.185 0.74024 1.41725 n -Dodecane C 12 H 26  [ 112-40-3 ]    9.6 216.3 1.503 0.74869 1.42160 n -Tridecane C 13 H 28  [ 629-50-5 ]    5.4 235.4 1.880 0.75622 1.42560 n -Tetradecane C 14 H 30  [ 629-59-4 ] 5.9 253.5 2.335 0.76275 1.42892 n -Pentadecane C 15 H 32  [ 629-62-9 ] 9.9 270.6 2.863 0.76830 1.43188 n -Hexadecane C 16 H 34  [ 544-76-3 ] 18.2 286.8 3.474 0.77344 1.43453 n -Heptadecane C 17 H 36  [ 629-78-7  ] 21.98 302.2 4.196 c 0.7779 c 1.4368 c n -Octadecane C 18 H 38  [ 593-45-3 ] 28.2 316.7 0.7818 c 1.4389 c n -Nonadecane C 19 H 40  [ 629-92-5 ] 31.9 330.6 0.7854 c 1.4408 c n -Icosane C 20 H 42  [ 112-95-8 ] 36.4 343.8 0.7886 c 1.4425 c n -Triacontane C 30 H 62  [ 638-68-6  ] 65.8 449.7 0.8096 c 1.4535 c n -Tetracontane C 40 H 82  [ 4181-95-7  ] 81.5 525 0.8204 c 1.4592 ca For saturation pressure (triple point). b At saturation pressure. c For the super-cooled liquid below the normal melting point. d  Value for the melting point of the metastable crystalline form. Vol. 18 Hydrocarbons 135  Natural Gas). Depending on the particularsource, natural gas may also contain acyclicsaturated hydrocarbons up to C 5  in proportionsthat permit their isolation [10]. The isolation of individual compounds from natural gas (see Fig-ure 1) can be performed either by absorption orby partial condensation at low temperature, fol-lowed by distillation. Petroleum  is the most abundant source of saturated hydrocarbons, both with respect to theabsolute amount and to the variety of individualcompounds. Petroleum is separated into individ-ual fractions by distillation in a refinery (see also !  Oil Refining). Such fractions contain several(liquefied petroleum gas, LPG; !  Liquefied Pe-troleum Gas) or many individual hydrocarbons(all other fractions); these fractions can be usedassuchorprocessedfurtherforuseasheating-orengine fuels, as lubricants, as raw materials forthe production of petrochemicals (synthesis gas !  Gas Production, 1. Introduction, acetylene,olefins, aromatics), or for the recovery of indus-trially important alkanes and cycloalkanes.From the liquefied petroleum gas fraction,propane,  n -butane, and  i -butane are isolated by Table 2.  Molar enthalpies of fusion, vaporization and combustion [2]Molar enthalpy, kJ/molFusion Vaporization(25   C)Combustion a Methane 0.942 802.861Ethane 2.86 5.02 1 428.787Propane 3.53 15.1 2 045.377Cyclopropane 5.44 1 960.637 n -Butane 4.66 21.1 2 658.827Cyclobutane 5.78 23.7 2 569.5232-Methylpropane 4.54 19.1 2 650.454 n -Pentane 8.41 26.8 3 274.287Cyclopentane 4.89 28.5 3 101.7072-Methylbutane 5.15 24.8 3 266.2482,2-Dimethylpropane 3.15 21.8 3 254.735 n -Hexane 13.1 31.7 3 886.812-Methylpentane 6.27 30.0 3 879.073-Methylpentane 30.4 3 881.712,2-Dimethylbutane 0.579 27.8 3 869.782,3-Dimethylbutane 0.80 29.2 3 877.86 n -Heptane 14.1 36.6 4 501.44 n -Octane 20.8 41.5 5 115.57 n -Dodecane 35.9 61.3 7 580.076 n -Hexadecane 51.9 81.1 10 040.616 n -Icosane 69.9 100.9 b 12 501.198 a For the reaction: Hydrocarbon (g)  !  CO 2  (g)  þ  H 2 O (g). b For the supercooled liquid, below the normal melting point. Table3. Enthalpyofformation,entropy,andfreeenergyofformationfor saturated hydrocarbons as gases (25   C) [53] D  H  0 , kJ/mol  S  0 , J mol  1 K   1 D G 0 , kJ/molMethane    74.898 186.313   50.828Ethane    84.724 229.646   32.908Propane   103.916 270.090   23.505Cyclopropane  þ  53.382 237.810 104.503 n -Butane   126.232 310.326   17.166Cyclobutane  þ  27.256 265.569 110.7412-Methylpropane   134.606 294.834   20.934 n -Pentane   146.538 349.179    8.374Cyclopentane    77.079 293.076 38.8952-Methylbutane   154.577 343.820   14.6542,2-Dimethylpropane   166.090 306.599   15.240 n -Hexane   167.305 388.661    0.2932-Methylpentane   174.422 380.789    5.0243-Methylpentane   171.743 380.036    2.1352,2-Dimethylbutane   185.685 358.474    9.9232,3-Dimethylbutane   177.897 366.010    4.103 n -Heptane   187.945 428.058  þ  8.039 n -Octane   208.586 467.038 16.412 n -Dodecane   291.066 622.912 50.074 n -Hexadecane   373.588 778.829 83.820 n -Icosane   456.068 934.745 117.398 Table 4.  Critical data and molar heat capacities of saturated hydro-carbons [2]Compound  T  c ,   C  p c , MPa  c  p , a J mol  1 K   1 Methane   82.6 4.60 35.74Ethane 32.28 4.88 52.67Propane 96.7 4.25 73.56Cyclopropane 125.1 5.57 56.27 n -Butane 152.0 3.80 97.51Cyclobutane 187 4.99 72.262-Methylpropane 135.0 3.65 96.88 n -Pentane 196.5 3.37 120.3Cyclopentane 238.5 4.50 82.982-Methylbutane 187.2 3.38 118.92,2-Dimethylpropane 160.6 3.20 121.7 n -Hexane 234.2 3.01 143.22-Methylpentane 224.3 3.01 144.33-Methylpentane 231.2 3.12 143.22,2-Dimethylbutane 215.6 3.08 142.02,3-Dimethylbutane 226.8 3.13 140.6 n -Heptane 267.0 2.74 166.1 n -Octane 295.6 2.49 189.0 n -Nonane 321.4 2.29 211.8 n -Decane 344.4 2.10 234.7 n -Undecane 365.6 1.97 257.6 n -Dodecane 385.1 1.82 280.5 n -Tridecane 402.6 1.72 303.4 n -Tetradecane 418.7 1.62 326.3 n -Pentadecane 433.6 1.52 349.2 n -Hexadecane 447.4 1.42 372.0 n -Heptadecane 460.2 1.32 394.9 n -Octadecane 472.1 1.22 417.8 n -Nonadecane 483 1.12 440.7 n -Icosane 494 1.12 463.6 * Based on 25   C and ideal gas state. 136 Hydrocarbons Vol. 18
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x