maths basic formulas.pdf

Description
Description:
Categories
Published

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
7 inch2.5 inch2.5 inch2.5 inch LO RITHM  I N X Topic Page No. LOGARITHM l. Basic Mathematics 12. Historical Development of Number System 33. Logarithm 54. Principal Properties of Logarithm 7 5. Basic Changing theorem 86. Logarithmic equations 107. Common & Natural Logarithm 128. Characteristic Mantissa 129. Absolute value Function 1410. Solved examples 17 11. Exercise 2412. Answer Key  3013. Hints & Solutions 31 LO RITHM  BANSALCLASSES Private Ltd. ‘Gaurav Tower’, A-10, Road No.-1, I.P.I.A., Kota-05  ACC MT LOGARITHM 1 LOGARITHM BASIC MATHEMATICS : Remainder Theorem : Let p(x) be any polynomial of degree geater than or equal to one and 'a' be any real number.If p(x) isdividedby (x–a), thentheremainderisequalto p(a). Factor Theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a)=0,then (x–a) isafactorof p(x).Conversely,if (x–a)isafactorof p(x), then p(a)=0. Note :  Let p(x) beanypolynomialofdegreegreaterthanorequaltoone.Ifleadingcoefficientof p(x) is 1then p(x) iscalledmonic.(Leadingcoefficientmeanscoefficientofhighestpower.) SOME IMPORTANT IDENTITIES : (1) (a + b) 2 = a 2 + 2ab + b 2 = (a – b) 2 + 4ab(2) (a – b) 2 = a 2  – 2ab + b 2 = (a + b) 2  – 4ab(3) a 2  – b 2 = (a + b) (a – b)(4) (a + b) 3 = a 3 + b 3 + 3ab (a + b)(5) (a – b) 3 = a 3  – b 3  – 3ab (a – b)(6) a 3 + b 3 = (a + b) 3  – 3ab (a + b) = (a + b) (a 2 + b 2  – ab)(7) a 3  – b 3 = (a – b) 3 + 3ab (a – b) = (a – b) (a 2 + b 2 + ab)(8) (a + b + c) 2 = a 2 + b 2 + c 2 + 2 (ab + bc + ca) = a 2 + b 2 + c 2 + 2abc       c1 b1a1.(9) a 2 + b 2 + c 2  – ab – bc – ca =21   222 )ac()c b() ba(   (10) a 3 + b 3 + c 3  – 3abc = (a + b + c) (a 2 + b 2 + c 2  – ab – bc – ca)=21(a + b + c)    222 )ac()c b() ba(   If (a + b + c) = 0, then a 3 + b 3 + c 2 = 3abc.(11) a 4  – b 4 = (a 2 + b 2 ) (a 2  – b 2 ) = (a 2 + b 2 ) (a – b) (a + b)(12) If a, b    0 then (a – b) =     ba ba   (13) a 4 + a 2 + 1 = (a 4 + 2a 2 + 1) – a 2 = (a 2 + 1) 2  – a 2 = (a 2 + a + 1) (a 2  – a + 1)  2 ACC MT LOGARITHMBANSALCLASSES Private Ltd. ‘Gaurav Tower’, A-10, Road No.-1, I.P.I.A., Kota-05  Definition of Indices : Theproductof m factorseachequalto a isrepresented by a m .So, a m =a·a·a........a(mtimes).Here a iscalledthebaseand m istheindex (orpowerorexponent). Law of Indices : (1) a m+ n =a m ·a n ,where m and narerational numbers.(2) a  –m =  m a1 , provided a    0.(3) a 0 = 1, provided a    0.(4) a m– n = nm aa ,where m and narerational numbers, a   0.(5) (a m ) n = a mn .(6)  q pq p aa   (7) (ab) n = a n  b n . Intervals : Intervalsarebasicallysubsetsof R(thesetofallrealnumbers)andarecommonlyusedinsolvinginequaltities.If a,b  Rsuchthat a<b,thenwecandefinedfourtypesofintervalsasfollows: Name Representation Discription. Open interval (a, b) {x:a<x<b}i.e.,endpointsarenotincluded.Closeinterval [a,b] {x:a  x   b}i.e.,endpointsarealsoincluded.Thisispossibleonlywhenbothaandbarefinite.Open-closedinterval (a,b] {x:a<x   b}i.e.,aisexcludedand bisincluded.Closed-openinterval [a,b) {x:a  x<b}i.e.,a isincludedand bisexcluded. Note :(1) Theinfiniteintervalsaredefinedasfollows: (i) (a,   ) = {x : x > a } (ii) [a,   ) = {x |x    a }(iii) ( –    , b) = {x : x < b} (iv) (–    , b] = {x : x    b}(v) (–    ,   ) = {x : x   R} (2)  x  {1,2}denotessomeparticularvaluesof x,i.e., x=1,2. (3)  Iftheirisnovalueofx,thenwesay x   (i.e.,nullsetorvoidsetoremptyset).

Oct 7, 2019

Ensayo -Socializacion II

Oct 7, 2019
Search
Similar documents

View more...
Tags

Discrete Mathematics

Related Search
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x