Documents

optica

Description
Importanca da redes ópticas
Categories
Published
of 41
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  Journal of Optics ROADMAP ã OPEN ACCESS Roadmap of optical communications To cite this article: Erik Agrell et al   2016 J. Opt.   18  063002 View the article online for updates and enhancements. Related content Exabit optical communication exploredusing 3M schemeMasataka Nakazawa-Gallium nitride LEDs for multi-gigabit-per-second visible light data communicationsSujan Rajbhandari, Jonathan J DMcKendry, Johannes Herrnsdorf et al.-Roadmap on silicon photonicsDavid Thomson, Aaron Zilkie, John EBowers et al.- Recent citations Mode-Locking of All-Fiber LasersOperating at Both Anomalous and NormalDispersion Regimes in the C- and L-BandsUsing Thin Film of 2D PerovskiteCrystallitesSeongjin Hong et al  -Fiber-optic transmission and networking:the previous 20 and the next 20 years[Invited]Peter J. Winzer et al  -Robust Regenerator Allocation inNonlinear Flexible-Grid Optical NetworksWith Time-Varying Data RatesLi Yan et al  - This content was downloaded from IP address 179.208.58.9 on 17/09/2018 at 23:26  Roadmap Roadmap of optical communications Erik Agrell 1,18 , Magnus Karlsson 2,18 , A R Chraplyvy 3 , David J Richardson 4 ,Peter M Krummrich 5 , Peter Winzer 3 , Kim Roberts 6 , Johannes Karl Fischer 7 ,Seb J Savory 8 , Benjamin J Eggleton 9 , Marco Secondini 10 ,Frank R Kschischang 11 , Andrew Lord 12 , Josep Prat 13 , Ioannis Tomkos 14 ,John E Bowers 15 , Sudha Srinivasan 15 , Maïté Brandt-Pearce 16 andNicolas Gisin 17 1 Department of Signals and Systems, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden 2 Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden 3 Bell Labs, Nokia, 791 Holmdel-Keyport Road, Holmdel, NJ 07733, USA 4 Optoelectronics Research Centre, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, SO17 1BJ, UK  5 Technische Universität Dortmund, Friedrich-Wöhler-Weg 4, D-44227 Dortmund, Germany 6 Ciena Corporation, 3500 Carling Ave., Ottawa, Ontario, Canada  7 Department of Photonic Networks and Systems, Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institute, Einsteinufer 37, D-10587 Berlin, Germany 8 Electrical Engineering Division, Engineering Department, University of Cambridge, 9 J J ThomsonAvenue, Cambridge CB3 0FA, UK  9 Centre for Ultrahigh Bandwidth Devices for Optical Systems  ( CUDOS ) , Institute of Photonics and OpticalScience  ( IPOS ) , School of Physics, University of Sydney, NSW 2006, Australia  10 TeCIP Institute, Scuola Superiore Sant  ’ Anna, I-56124 Pisa, Italy 11 Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada  12 British Telecom, pp. B29 / OP8, Polaris House, Adastral Park, Martlesham Heath, Ipswich, Suffolk, UK  13 Signal Theory and Communications Department, Universitat Politecnica de Catalunya, E-08034Barcelona, Spain 14 Athens Information Technology Center, Athens, 15125 Marousi, Greece 15 Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA 16 Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia,Charlottesville, Virginia 22904 USA 17 Group of Applied Physics, University of Geneva, CH-1211 Geneva 4, SwitzerlandE-mail: agrell@chalmers.se and magnus.karlsson@chalmers.se Received 14 September 2015, revised 15 December 2015Accepted for publication 15 December 2015Published 3 May 2016 Abstract Lightwave communications is a necessity for the information age. Optical links provide enormousbandwidth, and the optical  󿬁 ber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel Journal of OpticsJ. Opt.  18  ( 2016 )  063002  ( 40pp )  doi:10.1088 / 2040-8978 / 18 / 6 / 063002 18 Guest editors of the roadmap.Original content from this work may be used under the termsof the Creative Commons Attribution 3.0 licence. Anyfurther distribution of this work must maintain attribution to the author  ( s )  andthe title of the work, journal citation and DOI. 2040-8978 / 16 / 063002 + 40$33.00 © 2016 IOP Publishing Ltd Printed in the UK1  interconnects that provide data connectivity inside datacenters and supercomputers. Opticalcommunications is a diverse and rapidly changing  󿬁 eld, where experts in photonics, communications,electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novelservices and technologies. Due to the interdisciplinary nature of this rich research  󿬁 eld,  Journal of Optics  has invited 16 researchers, each a world-leading expert in their respective sub 󿬁 elds, tocontribute a section to this invited review article, summarizing their views on state-of-the-art andfuture developments in optical communications.Keywords: optical communication, optical  󿬁 ber, optical network, signal processing ( Some  󿬁 gures may appear in colour only in the online journal ) Contents 1. Introduction 42. History 53. Optical  󿬁 bers for next generation optical networks 74. Ampli 󿬁 cation and regeneration 95. Spatial multiplexing 116. Coherent transceivers 137. Modulation formats 158. Digital signal progressing 179. Optical signal processing 1910. Nonlinear channel modeling and mitigation 2111. Forward error correction 2312. Long-haul networks 2513. Access networks 2714. Optical communications for datacenters 2915. Optical integration and silicon photonics 3116. Optical wireless communications 3317. Quantum communication 35 2J. Opt.  18  ( 2016 )  063002 Roadmap  Table of acronyms ADC  analog-to-digital converter ASIC application-speci 󿬁 c integrated circuit AWGN additive white Gaussian noiseCD chromatic dispersionCMOS complementary metal-oxide semiconductor DAC digital-to-analog converter DBP digital backpropagationDC datacenter DCF dispersion compensating  󿬁 ber DCN datacenter network DD direct detectionDSF dispersion-shifted  󿬁 ber DSP digital signal processingEDFA erbium-doped  󿬁 ber ampli 󿬁 er ENOB effective number of bitsFDM frequency-division multiplexingFEC forward error correctionFWM four-wave mixingFMF few-mode  󿬁 ber FSO free space opticalHPC high-performance computing infrastructureIM intensity modulationLED light emitting diodeMCF multicore  󿬁 ber MD modal dispersionMIMO multiple-input, multiple-output NFT nonlinear Fourier transform NLSE nonlinear Schrödinger equationOFDM orthogonal frequency-division multiplexingONU optical network unit OWC optical wireless communicationPAM pulse amplitude modulationPDM polarization-division multiplexingPMD polarization-mode dispersionPON passive optical network PSK phase-shift keyingQAM quadrature amplitude modulationQC quantum communicationQKD quantum key distributionRF radio-frequencyROADM recon 󿬁 gurable optical add drop multiplexer RS Reed – SolomonSDM space-division multiplexingSNR signal-to-noise ratioSSMF standard single-mode  󿬁 ber TDM time-division multiplexingToR top of rack VCSEL vertical-cavity surface emitting laser VLC visible light communicationWDM wavelength-division multiplexing 3J. Opt.  18  ( 2016 )  063002 Roadmap

Welding_std

Dec 1, 2018
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x