Travel & Places

Stable carbon and nitrogen isotope analysis on human remains from the Early Mesolithic site of La Vergne (Charente-Maritime, France)

Description
We report here the results of stable carbon and nitrogen isotope analysis of human and faunal remains from La Vergne (Charente-Maritime, western France), a rare Early Mesolithic burial site (ca. 8500–8000 cal BC). The results for nine humans (average
Published
of 10
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  Stable carbon and nitrogen isotope analysis on human remains from theEarly Mesolithic site of La Vergne (Charente-Maritime, France) Rick J. Schulting  a, *, Stella M. Blockley  b , Herve´ Bocherens  c,d ,Dorothe´e Drucker  d,e , Mike Richards  f ,g a School of Archaeology, University of Oxford, OX1 2PG, UK  b  Department of Geography, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK  c  Institut des Sciences de l’Evolution, UMR 5554, Universite´ Montpellier 2, France d  Institut fu¨r Ur- und Fru¨hgeschichte und Archa¨ologie des Mittelalters, Universita¨t Tu¨bingen, Tu¨bingen, Germany e  Arche´ologies Environnementales, ArScAn, UMR 7041, MAE Rene´ Ginouve`s, Nanterre, France f   Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany g  Department of Archaeology, Durham University, South Road, Durham, DH1 3LE, UK  Received 29 January 2007; received in revised form 21 May 2007; accepted 19 June 2007 Abstract We report here the results of stable carbon and nitrogen isotope analysis of human and faunal remains from La Vergne (Charente-Maritime,western France), a rare Early Mesolithic burial site (ca. 8500 e 8000 cal BC). The results for nine humans (average  d 13 C ¼ 19.3 & ; d 15 N ¼ 9.4 & ) indicate a strongly terrestrial diet, dominated by animal protein, with the possibility of, at best, a slight contribution of marine-derived protein. Given lower sea-levels in the early Holocene, the site would have been some 60 e 80 km from the sea at the time of its use;nevertheless, contacts with the coast are shown by the presence of numerous marine shell beads in the graves. In the light of the stable isotoperesults, it is suggested here that such contacts most likely took the form of exchangewith coastal communities whose remains now lie underwater.   2007 Elsevier Ltd. All rights reserved.  Keywords:  Early Mesolithic; France; Stable carbon and nitrogen isotopes; Palaeodiet; Territoriality 1. Introduction Human remains dating to the Early Mesolithic are rare inmany parts of Europe, and are important in that they provideinformation concerning a period of transition, both environ-mental d from the Preboreal to the Boreal d and cultural d fromthe Epipalaeolithic to the Mesolithic. La Vergne falls withinthis timeframe, being an Early Mesolithic burial site (ca.8500 e 8000 cal BC), located in Charente-Maritime in westernFrance (Courtaud and Duday, 1995; Courtaud et al., 1999;Duday and Courtaud, 1998). Moreover, what is of particular in-terest at La Vergne is the presence of abundant marine shellbeads, indicating some form of contact with the coast, whichat this time would have been many tens of kilometres distant.This raises the question of whether the individuals buried atLa Vergne were highly mobile, systematically making use of a very large territory that included the coast, or, alternatively,whether the shells were obtained through trade, or through oc-casional forays to the coast for primarily non-subsistence pur-poses. The presence of a number of individuals at the siteprovides the opportunity to undertake a palaeodietary study us-ing stable carbon and nitrogen isotope analysis to address thisquestion. In addition, fauna from La Vergne together with pre-viously published faunal values from a near-contemporary site,enable an investigation of aspects of the terrestrial economy, * Corresponding author. Tel.:  þ 44 (0)1865 278246; fax:  þ 44 (0)1865278254.  E-mail address:  rick.schulting@arch.ox.ac.uk  (R.J. Schulting).0305-4403/$ - see front matter    2007 Elsevier Ltd. All rights reserved.doi:10.1016/j.jas.2007.06.008Journal of Archaeological Science 35 (2008) 763 e 772http://www.elsevier.com/locate/jas  and in particular the balance between plant and animal sourcesof protein, as well as the degree of variability in isotopic valueswithin this group. The measurements provided here add to thegrowing body of isotopic data available for prehistoric humandiets, and contribute towards a greater understanding of theirtemporal and spatial variability. 1.1. The site of La Vergne The site of La Vergne is located near the town of Saint-Jean-d’Angely, Charente-Maritime, on a slope of the valleyof the river Boutonne (Fig. 1; the site itself is also known bythe name of La Grande-Pie`ce, but we use the more commonplace-name as it appears in the titles of the primary publica-tions). The site was discovered during an archaeological sal-vage operation in 1995; the presence of Mesolithic graveswas completely unexpected, as these underlay a Gallo-Romansite, which was responsible for much disturbance, and possibledestruction of part of the earlier site (Courtaud and Duday,1995; Courtaud et al., 1999). Three surviving grave structurescontained the remains of 10 individuals, including adults of both sexes and young children, with the very fragmentaryand partial remains of an additional five individuals likely de-riving from two disturbed graves of the same period. Grave 10contained the massive horn cores of two aurochs interred withthe deceased (Courtaud et al., 1999, Photo 3). This grave andanother contained large numbers of marine shells, many perfo-rated for use as ornaments, as were a number of fox, deer andhuman teeth. 2. Materials and methods Stable carbon and nitrogen analysis was undertaken on bonecollagen extracted from 13 human and five faunal bone sam-ples from La Vergne, in order to provide information concern-ing palaeodiet at the site. The human samples were analysed attwo different laboratories, Bradford and Montpellier. The fau-nal samples were analysed at Bradford only; unfortunately verylimited faunal samples are available from the site, as no asso-ciated settlement has as yet been found, and the graves them-selves contained only a few species (red deer and aurochs) aspart of the funerary rite. The majority of the samples are asso-ciated with three complex graves, directly dated on humanbone to early in the Holocene, with three AMS estimates rang-ing from 9215 to 9070 BP, calibrating to the second half of theninth millennium BC (Table 1). These three determinations de-rive from bone in graves with multiple individuals, and so pro-vide good dated contexts for seven of the sampled individuals.Samples from two individuals are from disturbed contexts (lv4and lv5), but are tentatively suggested to be of comparable age,due in part to close physical proximity to the dated Mesolithicgraves, and in part to the presence of red ochre staining on atleast some bones from each context (Courtaud, personal com-munication). The remaining four individuals are thought toconsiderably post-date the Mesolithic interments, and may be-long to the Iron Age (lv3, lv7, lv8, lv13).  2.1. Stable isotope analysis Stable isotope analysis has been successfully applied toboth human and faunal remains from an increasing numberof Palaeolithic and Mesolithic sites across Europe (e.g., Bo-cherens et al., 1997, 2006, 2007; Drucker and Ce´le´rier,2001; Drucker and Henry-Gambier, 2005; Lillie and Richards,2000; Richards et al., 2000; Schulting and Richards, 2001).Stable carbon ( d 13 C) and nitrogen ( d 15 N) in bone collagencan yield information about protein sources in both humanand non-human animal past populations, providing a direct re-cord of long term diet, over a period of some 5 e 10 years inadult humans (Schwarcz and Schoeninger, 1991). In the ab-sence of C 4  plants, which do not feature in the diet of earlierprehistoric humans in northwest Europe,  d 13 C values reflectthe level of marine input into the diet, with endpoints of ca.  21 to   20 & for purely terrestrial protein to ca.   12 & forpurely marine protein. The  d 15 N values provide informationon the trophic level at which an organism is operating: humanand non-human consumer values are elevated by ca. 3 e 5 & over the values of their diets (Bocherens and Drucker, 2003;DeNiro and Epstein, 1981; Schoeninger and DeNiro, 1984).More comprehensive local values for the major herbivoresand carnivores would ideally be available to aid in the inter-pretation of the human data; unfortunately few data are avail-able. Of relevance, however, are faunal values from the earlyHolocene component at Pont d’Ambon, Dordogne, especiallythe material from layer 2, dated to the Preboreal Azilian period(Drucker, 2001; Drucker and Ce´le´rier, 2001).  2.2. Methods 1, Bradford  Bone samples of 200 e 300 mg in weight were cleanedusing an air abrasion system. These were demineralised at4   C in 0.5 M HCl. Once demineralised, the samples wererinsed three times with de-ionised water. They were then intro-duced to a pH 3 solution and placed in a heater block at 70   Cfor 48 h. The samples were first filtered in a 8  m m filter andthen ultrafiltered, with the > 30 kDa fraction taken to be frozenand freeze-dried (Brown et al., 1988). Between 0.3 and 0.5 mgof the resulting collagen was weighed into tin cups for analysisin a ThermoFinnigan Flash EA coupled to a Delta Plus XLmass spectrometer. A number of blank samples and internalstandards, including three randomly assigned methionine sam-ples of known weight (0.6 e 0.7 mg) were introduced with thesamples to ensure instrument integrity (see Richards and Hed-ges, 1999). Standard measurement errors are   0.2 & for  d 13 Cand   0.3 & for  d 15 N.  2.3. Methods 2, Montpellier  Bone samples of 200 e 300 mg in weight were cleaned andground to a powder sieved through a 0.7 mm mesh. Thesewere demineralised at room temperature in 1 M HCl for20 min, filtered through a 5  m m Millipore  filter and the insol-uble residue was soaked in a 0.125 M NaOH solution for 20 hat room temperature to remove humic components. After 764  R.J. Schulting et al. / Journal of Archaeological Science 35 (2008) 763 e 772  filtration through a 5  m m Millipore  filter, the insoluble resi-due was heated in a pH 2 HCl solution at 100   C for 17 h,and the insoluble fraction was removed after a second filtra-tion. The solubilized fraction containing gelatin was thenfreeze-dried and judged to correspond to collagen if the chem-ical characteristics (%C, %N, C/N) were within the range of those of collagen extracted from fresh bone using the sameprotocol. Around 0.2 e 0.3 mg of this product was weighedinto tin cups for analysis in a Eurovector EA coupled toa VG-Optima mass spectrometer. A number of blank samplesand internal standards, including purified alanine samples of known weight (0.2 e 0.3 mg) were introduced with the samplesto ensure instrument integrity. The standard errors of the iso-topic measurements are 0.1 &  and 0.2 &  for  d 13 C and  d 15 Nvalues, respectively. 3. Results and discussion The results of the analysis on the humans and fauna are pre-sented in Tables 2 e 4, and Fig. 2. For samples analyzed in both laboratories, average  d 13 C and  d 15 N values were calculated foreach sample when both measurements yielded C:N valueswithin the acceptable range of 2.9 to 3.6 (DeNiro, 1985).For the Montpellier dataset, one human sample (lv4) was re- jected due to its C:N ratio of 2.4 falling well outside the ac-cepted range; therefore only the analysis performed inBradford was retained for this specimen. C:N ratios of 2.8were obtained for two individuals at Bradford (lv1, lv7), againoutside of the accepted range; therefore, the collagen isotopicvalues measured in Montpellier on the same samples, withsuitable C:N values, were retained. While the results from Deux-SèvresCharente 20 10 BoutonneSèvre NiortaiseCharenteVendéeSeudreSeugne   G   i    r   o   n   d    e     Autize N - 2  0   m  - 1  0   m  - 1  0  0   m  - 5   0   m  - 3  5    m   0 20 40 km GirondeVendée Île de Ré Île d'OléronCharente-Maritime La Vergne  Île d'Yeu La Pierre-Saint-LouisLa Grange Fig. 1. Map of Charente Maritime showing the location of La Vergne. The  35 m contour marks the approximate coastline at ca. 9000 BP (ca. 8300 cal BC). Theactual coastline would likely be more complex than shown here. (Isobath contours from Admirality Charts 2663 and 2664.)Table 1AMS determinations on human bone from La VergneGrave Lab. no. Date BP    cal BC7 OxA-6699/LY-369 9070 70 8535 799010 OxA-6700/LY-370 9215 65 8605 82953 OxA-6698/LY-368 9075 65 8535 8005Source: Duday and Courtaud (1998, 37). Re-calibrated using CALIB 5.0.2.765  R.J. Schulting et al. / Journal of Archaeological Science 35 (2008) 763 e 772  the two laboratories compare reasonably well, a number of mi-nor discrepancies are evident at the level of specific individ-uals, particularly in the  d 13 C values. The reason for thisdifference is not known, and warrants further investigation.However, due to the use of international standards in both lab-oratories, it is unlikely that the differences are due to differ-ences in the isotope measurements themselves, but instead tothe differing pretreatments, such as the additional stage of ul-trafiltration at Bradford. Other factors may also be involved:the different isotope values seen in the infant (lv6), for exam-ple, could be due to the young age of this individual (ca.2 years). Indeed, since two different parts of the same bonewere analyzed in Bradford and Montpellier, and the turnoverrate varies within a given bone, an individual with changingisotopic values in their diet may record different proportionsof one diet in one part of its bone than in another part of thesame bone. A child experiences changing isotopic values of its diet due to breastfeeding and weaning (e.g., Fogel et al.,1989; Fuller et al., 2003; Katzenberg et al., 1993; Schurr,1998), changes that are recorded differently in different partsof a given bone depending on the turnover rate (e.g., Balasseet al., 1997; Herrscher and Bocherens, 2000).The five faunal samples were measured at Bradford only.Unfortunately they show poor preservation: two failed to yieldcollagenaltogether,whiletheC:Nratioofanother(2.7)fellout-side the acceptable range, though its  d 13 C and  d 15 N values arenot inconsistent with the remaining two herbivore samples; itisneverthelessexcludedfromthesummary.Ideallyboththeter-restrial andmarineendpointswouldbe determinedlocally fromcontemporary fauna: in the absence of marine fauna at LaVergne, or indeed fauna from any Early Holocene coastal sitesin this region (as they have been inundated by sea-level rise),this was possible only for terrestrial fauna, which yielded ex-pected values (Table 5). The terrestrial faunal samples are aug-mented by the inclusion of isotopic data from the Azilian(Preboreal) site of Pont d’Ambon, Dordogne (Drucker, 2001;Drucker and Ce´le´rier, 2001). Combining the faunal data, a ter-restrial end-point of ca.  21 & can be suggested.The human stable isotope values from La Vergne clearlyrepresent a predominantly terrestrial diet with some individ-uals possibly suggesting a minor marine or estuarine compo-nent (discussed further below). The  d 15 N signal is consistentwith an emphasis on the consumption of terrestrial animalrather than plant protein. The average human  d 15 N value of 9.4 & is over 5 & above the average of 4.2 & for the combinedfaunal sample, and so is at the very top end of the suggestedrange of 3 e 5 & for a trophic level shift (it is recognised thatthe faunal average reflects the proportional representationof the species sampled and not necessarily of those hunted,but in the absence of further data from these and other species,this seems an appropriate heuristic value). As a diet of 100%terrestrial mammal protein seems improbable, this stronglysuggests a certain proportion of even higher trophic level foodsin the diets of some individuals, whether marine/freshwaterfish or birds, or possibly marine/freshwater shellfish, someof which can show elevated  d 15 N values. The value for the om-nivorous wild boar is higher than the herbivore average by ca.     T   a    b    l   e    2    H   u   m   a   n   r   e   m   a    i   n   s   a    t    l   a    V   e   r   g   n   e   :   s    t   a    b    l   e    i   s   o    t   o   p   e   r   e   s   u    l    t   s    S   a   m   p    l   e    C   o   n    t   e   x    t    N   o .    E    l   e   m   e   n    t    S   e   x    A   g   e    B   r   a    d    f   o   r    d    M   o   n    t   p   e    l    l    i   e   r    C   o   m    b    i   n   e    d    A    t    t   r    i    b   u    t    i   o   n    %    C   o    l    l   a   g   e   n           d         1        3     C           d         1        5     N    %    C    %    N    C   :    N           d         1        3     C           d         1        5     N    N    (    %    )   m   g    /   g    %    C    %    N    C   :    N           d         1        3     C           d         1        5     N    l   v    1    0    S    t .    3    6    3    F   e   m   u   r ,    L .    ?    A    d   u    l    t    2 .    4         1    9 .    1    9 .    0    3    3 .    1    1    2 .    3    3 .    1         1    9 .    1    9 .    6    0 .    7    2    1 .    9    3    8 .    3    1    4 .    5    3 .    1         1    9 .    1    9 .    3    M   e   s   o    l    i    t    h    i   c ,    9    0    7    5            6    5    B    P    l   v    2    S    t .    3    1    2    7    C   r   a   n    i   u   m    M    ?    A    d   u    l    t    2 .    6         1    9 .    0    9 .    4    3    4 .    0    1    2 .    8    3 .    1         1    9 .    1    1    0 .    2    0 .    7    2    5 .    3    3    4 .    7    1    2 .    7    3 .    2         1    9 .    0    9 .    8    M   e   s   o    l    i    t    h    i   c ,     w     9    0    7    5    B    P    l   v    9    S    t .    3    5    8    5    T    i    b    i   a ,    R .    F    A    d   o    l   e   s   c   e   n    t    2 .    7         1    9 .    3    8 .    7    2    9 .    8    1    1 .    4    3 .    0         1    9 .    5    9 .    6    0 .    7    2    5 .    7    3    6 .    5    1    3 .    5    3 .    1         1    9 .    4    9 .    1    M   e   s   o    l    i    t    h    i   c ,     w     9    0    7    5    B    P    l   v    1    2    S    t .    7    2    0    3    9    U    l   n   a ,    L .    F    ?    A    d   u    l    t    2 .    7         1    9 .    6    7 .    7    3    2 .    2    1    2 .    4    3 .    0         2    0 .    2    7 .    4    0 .    7    1    0 .    9    3    8 .    4    1    4 .    8    3 .    0         1    9 .    9    7 .    5    M   e   s   o    l    i    t    h    i   c ,    9    0    7    0            7    0    B    P    l   v    1    S    t .    7    2    0    1    4    F   e   m   u   r ,    L .    F    ?    A    d   u    l    t    2 .    2         1    9 .    0    7 .    8    1    0 .    7    4 .    1    3 .    1         1    9 .    4    8 .    1    0 .    7    1    9 .    7    3    1 .    5    1    1 .    7    3 .    1         1    9 .    2    8 .    0    M   e   s   o    l    i    t    h    i   c ,     w     9    0    7    0    B    P    l   v    1    1    S    t .    1    0    6    6    8    T    i    b    i   a ,    R .    M    A    d   u    l    t    2 .    5         1    9 .    5    8 .    9    3    1 .    5    1    2 .    2    3 .    0         2    0 .    2    9 .    0    0 .    8    2    2 .    6    3    6 .    4    1    3 .    4    3 .    2         1    9 .    9    9 .    0    M   e   s   o    l    i    t    h    i   c ,    9    2    1    5            6    5    B    P    l   v    6    S    t .    1    0    2    9    2    T    i    b    i   a ,    L .    ?    I   n    f   a   n    t    5 .    2         1    9 .    4    9 .    9    3    5 .    4    1    3 .    9    3 .    0         1    9 .    2    1    1 .    3    1 .    0    3    1 .    1    3    7 .    0    1    3 .    4    3 .    2         1    9 .    3    1    0 .    6    M   e   s   o    l    i    t    h    i   c ,     w     9    2    1    5    B    P    l   v    4    S    t .    4    e     M   e    t   a   c   a   r   p   a    l    ?    A    d   u    l    t    1 .    2         1    8 .    5    1    1 .    7    3    3 .    4    1    2 .    9    3 .    0            1       9 .       3       9 .       4       0 .       4       1       4 .       2       1       7 .       6       8 .       7       2 .       4         1    8 .    5    1    1 .    7    M   e   s   o    l    i    t    h    i   c    ?    D    i   s    t   u   r    b   e    d    l   v    5    S    t .    1    1    7    F    i    b   u    l   a    M    A    d   u    l    t    2 .    4         1    8 .    7    1    0 .    1    3    2 .    6    1    2 .    6    3 .    0         1    9 .    9    9 .    7    1 .    2    3    5 .    4    4    2 .    6    1    5 .    7    3 .    2         1    9 .    3    9 .    9    M   e   s   o    l    i    t    h    i   c    ?    D    i   s    t   u   r    b   e    d    l   v    7    S    t .    1    0    1    5    2    U    l   n   a ,    L .    ?    A    d   u    l    t        3 .       0            1       9 .       4       9 .       3       3       1 .       7       1       3 .       4       2 .       8         1    9 .    6    8 .    9    0 .    6    2    2 .    8    3    7 .    8    1    4 .    4    3 .    1         1    9 .    6    8 .    9    U   p   p   e   r   p   a   r    t   ;    l    i    k   e    l   y   p   o   s    t  -    M   e   s   o    l   v    3    F    5    9    T    i    b    i   a ,    L .    ?    A    d   u    l    t    3 .    1         1    9 .    4    9 .    6    3    4 .    6    1    3 .    8    2 .    9         1    9 .    5    9 .    0    0 .    8    3    0 .    7    4    1 .    2    1    5 .    4    3 .    1         1    9 .    5    9 .    3    D    i   s    t   u   r    b   e    d   ;   p   o   s    t  -    M   e   s   o    l    i    t    h    i   c    ?    l   v    8    S    t .    1    e     F    i    b   u    l   a    ?    A    d   u    l    t    3 .    5         2    0 .    6    1    0 .    0    2    8 .    7    1    0 .    9    3 .    1         2    0 .    1    9 .    7    0 .    6    2    6 .    0    3    8 .    8    1    5 .    7    2 .    9         2    0 .    4    9 .    9    D    i   s    t   u   r    b   e    d   ;   p   o   s    t  -    M   e   s   o    l    i    t    h    i   c    ?    l   v    1    3    S    t .    1    2    9    T    i    b    i   a ,    R .    ?    A    d   u    l    t        3 .       0            1       9 .       2       9 .       7       2       8 .       9       1       1 .       9       2 .       8         1    9 .    5    9 .    4    0 .    7    2    6 .    6    3    7 .    3    1    4 .    1    3 .    1         1    9 .    5    9 .    4    D    i   s    t   u   r    b   e    d   ;   p   o   s    t  -    M   e   s   o    l    i    t    h    i   c    ?    V   a    l   u   e   s    i   n    i    t   a    l    i   c   s    f   a    l    l   o   u    t   s    i    d   e    t    h   e   a   c   c   e   p    t   e    d   r   a   n   g   e    f   o   r   g   o   o    d   c   o    l    l   a   g   e   n   p   r   e   s   e   r   v   a    t    i   o   n   a   n    d   a   r   e   e   x   c    l   u    d   e    d    f   r   o   m   a    l    l   s   u   m   m   a   r   y   c   a    l   c   u    l   a    t    i   o   n   s   a   n    d   g   r   a   p    h   s . 766  R.J. Schulting et al. / Journal of Archaeological Science 35 (2008) 763 e 772  2 & (Table 6), and if this species featured heavily in the dietthe human values would thus also be raised. At the sametime, it is important to note that some plant foods may also ex-hibit elevated nitrogen values. Schoeninger (1995, 98), for ex-ample, reports a value of 12.1 &  for modern cattail,  Typhalatifolia , an edible species used by Native Americans in theGreat Basin, but also occurring in Europe. The possibilitythat this plant, or similar species, formed part of the diet of Mesolithic humans urgently requires further investigation.Nevertheless, on the currently available evidence, the mostplausible scenario is that the individuals at La Vergne obtainedthe majority of their protein from terrestrial animal sources,though this does still leave some scope for contributionsfrom aquatic and plant resources. The importance of largegame is also indicated for one of the few Mesolithic faunal as-semblages from Charente-Maritime, a small fragmentary col-lection from La Grange, dominated by aurochs and red and roedeer, with some boar also present. This is undoubtedly a biasedsample, however, with the absence of smaller species, includ-ing birds and fish, being due to poor preservation (Laporteet al., 2000).The human values cluster reasonably tightly; the exceptionsto this being individuals lv8 and lv4 (Fig. 2). Sample lv4 istentatively considered to be Mesolithic based on archaeologi-cal data, and its high  d 13 C and  d 15 N values can be interpretedas possibly reflecting a greater marine contribution than seenin the other Mesolithic individuals. Samples lv8, togetherwith lv3, 7 and 13, are considered to post-date the Mesolithicinterments, and may belong to a Gallo-Roman occupation onthe site (Courtaud and Duday, 1995; Duday and Courtaud,1998). Specimen lv8 shows a higher than expected  d 15 N valuein relation to its  d 13 C value. In the absence of clear chronolog-ical information and associated fauna, it is difficult to decipherthe effects of possible changes in the isotopic signatures of terrestrial food items (e.g. Richards and Hedges, 2003) andthe effects of possible changes in the proportion of differentfood items in the diet. Otherwise, the suspected later inter-ments do not differ substantially from the Mesolithic burialsin either dataset (Table 5), though this need not necessarily im-ply that their diets are equivalent, as the baseline floral andfaunal values may change through time. The presumed post-Mesolithic samples are not discussed further here. Two sam-ples are from disturbed contexts (lv4, lv5), but, as noted above,are thought to be Mesolithic and so are included in the follow-ing discussion. Additional AMS dates are in process to con-firm this (Courtaud, personal communication).One of the key questions posed by the small Mesolithiccemetery at La Vergne is whether any consumption of marineprotein is indicated. This issue arises because of the quantityof marine shells found in the graves, though in the form of pierced ornaments rather than consumption debris. It is clearfrom the above discussion that the overall emphasis isotopi-cally is on terrestrial resources, and so any contribution of ma-rine foods would be minor at best, making its detectionchallenging, particularly in the absence of a wider range of contemporary, local faunal values. Nevertheless, there maybe some slight evidence for a contribution of marine proteinin the diets of some individuals. First, the average  d 13 C valueis significantly higher for the humans than for the fauna. Sec-ond, in the absence of C 4  systems, one of the strongest lines of evidence for determining whether marine protein features ina dataset is the extent to which  d 13 C and  d 15 N values are pos-itively correlated (cf. Richards and Hedges, 1999; Kelly,2000). A linear regression analysis applied to the eight knownand suspected Mesolithic adults (the infant is excluded as sub- ject to a ‘nursing effect’, discussed below) shows a significantpositive correlation ( r  2 ¼ 0.60,  F  ¼ 9.11,  p ¼ 0.023) (Fig. 3).This suggests that a minor contribution of marine-derived Table 3Faunal remains at la Vergne: stable isotope resultsSample Context Species Element % Collagen  d 13 C  d 15 N %C %N C:Nlv20 St.10  Bos primigenius  Astragalus No collagen extractedlv21 St.7  Cervus elaphus  Antler No collagen extractedlv23 St.3  Bos primigenius  Astragalus  1.8   19.2 4.8 11.9 5.1 2.7  lv24 St.10  Bos primigenius  Cranium 1.1   21.0 4.1 26.4 10.1 3.1lv22 F5 Unidentified faunal Unidentified fragment 1.4   20.6 5.2 32.9 12.3 3.1Values in italics fall outside the accepted range for good collagen preservation are excluded from all summary calculations and graphs.Table 4Faunal remains at Pont d’Ambon, layer 2, Early Preboreal age (after Drucker, 2001)Sample Identification Species Element N (%) Yield (mg/g) N yield  d 13 C  d 15 N %C %N C:NPAM200 Pd’A K5-110 c.2  Cervus elaphus  Humerus 0.7 10.3 22.8   20.3 3.9 39.2 14.4 3.2PAM300 Pd’A D8-26 c.2  Cervus elaphus  Phalanx 1.6 79.9 78.9   23.4 4.0 42.8 15.4 3.2PAM400 Pd’A J5-131 c.2  Cervus elaphus  Radius 1.4 39.7 43.4   20.2 3.1 41.5 15.2 3.2PAM500 Pd’A J5-105 c.2  Cervus elaphus  Tibia 0.8 20.4 38.4   20.5 4.5 41.5 15.3 3.2PAM900 Pd’A G5-0 c.2  Capreolus capreolus  Phalanx 1.1 24.9 30.4   21.0 3.4 37.3 13.4 3.2PAM600 Pd’A H6-17 c.2  Equus ferus  Phalanx 1.1 47.7 67.7   21.6 4.1 41.6 15.0 3.2PAM700  Equus ferus  Phalanx 1.1 37.6 53.7   20.6 4.3 42.7 15.5 3.2PAM800  Equus ferus  Scapula 0.8 28.8 54.6   20.7 3.4 41.1 15.0 3.2PAM1000 Pd’A H8-27 c.2  Sus scrofa  Phalanx 0.9 37.3 50.4   20.1 6.3 35.3 12.7 3.2767  R.J. Schulting et al. / Journal of Archaeological Science 35 (2008) 763 e 772
Search
Similar documents
View more...
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks