Documents

Detailed 08 Days CFD Training Workshop.pdf

Categories
Published
of 4
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Share
Description
Chemical Engineering Department, MUET Jamshoro Short Course on COMPUTATIONAL FLUID DYNAMICS (CFD) A Comprehensive Introduction (February 11 to February 20, 2013) Day-to-Day Program Day Time Activity Topics D a y - 1 M o n d a y 1 1 - 0 2 - 2 0 1 3 15:00 ~16:00 Lecture 1 INTRODUCTION TO CFD  Fluid Dynamics  Historical Development  What is Computational Fluid Dynamics?  CFD: How It Works?  Discretization  Design and Create the Grid  Setup the Numerical Model  Exami
Transcript
  Chemical Engineering Department, MUET Jamshoro Short Course on COMPUTATIONALFLUIDDYNAMICS CFD A Comprehensive Introduction  (February 11 to February 20, 2013) Day-to-Day Program Day Time Activity Topics     D   a   y  -    1    M   o   n    d   a   y    1    1  -    0    2  -    2    0    1    3 15:00 ~16:00 Lecture 1 INTRODUCTIONTOCFD   Fluid Dynamics   Historical Development   What is Computational Fluid Dynamics?   CFD: How It Works?   Discretization   Design and Create the Grid   Setup the Numerical Model   Examine the Results   Applications, Advantages and Limitations of CFD16:00~1630 Refreshment Break 1630~18:00 Lecture 2 FLOWFIELDS   Important Variables   Post-Processing   Fluid Motion   Methods to Show Translation   Pressure   Streamlines, Pathlines, Streaklines, Pathlines andStreaklines - unsteady flow,Timelines     D   a   y  -    2    T   u   e   s    d   a   y    1    2  -    0    2  -    2    0    1    3 15:00 ~16:00 Lecture 3 CONSERVATIONEQUATIONS   Governing Equations   Lagrangian vs. Eulerian Description   Fluid Element and Properties   Mass Balance   Continuity Equation   Different Forms of the Continuity Equation   Rate of Change For a Fluid Particle   Rate of Change For a Stationary Fluid Element   Fluid Particle and Fluid Element   Momentum Equation in Three Dimensions   Different Equations of Interest   Summary of Equations in Conservation Form   General Transport Equations   Integral Form16:00~1630 Refreshment Break   1630~18:00 Lecture 4 SOLUTIONMETHODS   Overview of Numerical Methods   Finite Difference Method (FDM)   Finite Element Method (FEM)   Finite Volume Method (FVM)   Cells and Nodes   Typical Control Volume   General Approach   General approach – Relaxation   Under-relaxation Recommendation   General Approach – Convergence   Monitor Residuals   Numerical Schemes: Finding Face Values   Solution Accuracy   Pressure and Pressure - Velocity Coupling   Principle Behind SIMPLE   Finite Volume Solution Methods   Segregated Solution Procedure   Coupled Solution Procedure   Unsteady Solution Procedure     D   a   y  -    3    W   e    d   n   e   s    d   a   y    1    3  -    0    2  -    2    0    1    3 15:00 ~16:00 Lecture 5 BOUNDARYCONDITIONS   Boundary Conditions   Flow Inlets and Outlets   Pressure Boundary Conditions   Velocity Inlets   Outflow Boundary   Modeling Multiple Exits   Other Inlet and Outlet Boundary Conditions   Determining Turbulence Parameters   Wall Boundaries   Symmetry Boundaries   Periodic Boundaries   Axis Boundaries   Cell Zones: Fluid   Porous Media Conditions   Moving Zones   Cell Zones: Solid   Internal Face Boundaries   Material Properties16:00~1630 Refreshment Break 1630~18:00 PracticalSession 1   Installation of Gambit®2.2 and Fluent®6.3.26Softwares   Develop a simple 2D Geometry on Gambit Software   Setting up the Boundary Conditions   Meshing of Geometry   Exporting the Geometry as mesh file      D   a   y  -    4    T    h   u   r   s    d   a   y    1    4  -    0    2  -    2    0    1    3  15:00 ~16:00 Lecture 6 MESHING   Why is a grid needed?   Geometry   Typical Cell Shapes   Terminology   Grid Types   Mesh Naming Conventions – topology   Mesh Generation Process   Mesh Quality   Grid Design Guidelines   Solution Adaption   Grid Adaption   Main Sources of Errors16:00~1630 Refreshment Break 1630~18:00 PracticalSession 2   Development of 3D Geometry in Gambit   Understanding some Advance Options in Software.     D   a   y  -    5    F   r    i    d   a   y    1    5  -    0    2  -    2    0    1    3 15:00 ~16:00 Lecture 7 TURBULENCE   Turbulence and Instability   What is Turbulence?   Example of Simple Turbulent Flows   Turbulence Modeling Objective   Turbulence Models   Prediction Methods   Boussinesq Hypothesis   Turbulent Viscosity and Schmidt Number    Predicting The Turbulent Viscosity   The  k- ε  Model   RNG  k- ε  Model   Realizable  k- ε  Model   k- ω Model   Algebraic Stress Model   Non-Linear Models   Reynolds Stress Model   Comparison of RANS Turbulence Models16:00~1630 Refreshment Break 1630~18:00 PracticalSession 3   Setting-up the First Case in Fluent®6.3.26   Selection of Basic Models, Materials and BoundaryConditions   Solution Scheme Setup and Iterations   Post-processing of Converged Case      D   a   y  -    6    M   o   n    d   a   y    1    8  -    0    2  -    2    0    1    3  15:00 ~16:00 Lecture 8 HEATTRANSFER    Introduction   Modes of Heat Transfer    Overview of Dimensionless Numbers   Enthalpy Equation   Conjugate Heat Transfer    Periodic Heat Transfer    Heat Conduction – Fourier’s Law   Generalized Heat Diffusion Equation   Convection Heat Transfer    Newton’s Law of Cooling   Heat Transfer Coefficient   Radiation Heat Transfer    The Radiative Heat Transfer Equation (RTE)   Radiation Models and Their Selection   Wall Heat Flux Calculation   Heat Transfer Optimization   Fluid Properties and Phase Change   Thermal Boundary Conditions16:00~1630 Refreshment Break 1630~18:00 PracticalSession 4   Development the Case: Fluid Flow and Heat Transfer in Mixing Elbow     D   a   y  -    7    T   u   e   s    d   a   y    1    9  -    0    2  -    2    0    1    3  15:00 ~16:00 Lecture 9 SOMEOTHERUSEFULLMODELS   Multiphase Flows   Discrete Phase Modeling16:00~1630 Refreshment Break 1630~18:00 PracticalSession 5    Modeling External Compressible Flow     D   a   y  -    8    W   e    d   n   e   s    d   a   y    2    0  -    0    2  -    2    0    1    3 15:00 ~16:00 PracticalSession 6   Modeling Species Transport and Gaseous Combustion   Using the Non-Premixed Combustion Model16:00~1630 Refreshment Break 1630~18:00 PracticalSession 7    Case Studies

aac2_2013

Jul 23, 2017
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks