# A cycle lemma for permutation inversions

Description
A cycle lemma for permutation inversions
Categories
Published

## Download

Please download to get full document.

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
Discrete Mathematics 257 (2002) 1–13www.elsevier.com/locate/disc A cycle lemma for permutation inversions S. Brunetti a ; ∗ , A. Del Lungo a , F. Del Ristoro  b a Dipartimento di Matematica e Informatica Teorica, Universita di Siena, Via del Capitano 15,53100 Siena, Italy  b DSI, Universita di Firenze, Via Lombroso 6  =  17, 50134, Firenze, Italy Received 20 August 1999; received in revised form 24 September 2001; accepted 8 October 2001 Abstract In this paper we study some properties of the  inversion  statistic. Some enumerative resultsconcerning the permutations of the multiset  {  x m 1 1  ;x m 2 2  }  with respect to the inversion parameter are established and it is shown that these depend on gcd( m 1 ;m 2 ). Using a “cycle lemma”, acombinatorial proof of the results is given. Moreover, some applications to the Gaussian binomialcoecient are illustrated. c   2002 Elsevier Science B.V. All rights reserved. Keywords:  Multiset; Permutation; Inversion; Major; Cyclic shift; Greatest common divisor; Congruence;Gaussian binomial coecient 1. Introduction The  inversion  statistic is a well-known statistic on permutations of sets and multisetsstudied by many authors [1,3,6,7,10,13]. A multiset is a set with possibly repeated elements. Let  X  n  = {  x m 1 1  ;x m 2 2  }  be a multiset of cardinality  n  such that  n = m 1  +  m 2 ,where  x 1 ¡x 2 . Given a word  w = w 1 w 2  :::w n  which is a permutation of   X  n , the  inversionnumber  of   w  is dened as inv( w )= |{ ( i;j ):  i¡j  and  w i ¿w  j }| . Let I n;h  = { w  ∈ X n  :inv( w ) ≡ h (mod n ) } ; with 0 6 h¡n , where  X n  is the set of all permutations of   X  n . We will illustrate that thefamily of sets  I n; 0 ; I n; 1 ;:::; I n;n − 1  is a partition of   X n , whose properties are connected ∗ Corresponding author. E-mail addresses:  sara.brunetti@unisi.it (S. Brunetti), dellungo@unisi.it (A. Del Lungo), fdr@dsi.uni.it(F. Del Ristoro).0012-365X/02/\$-see front matter  c   2002 Elsevier Science B.V. All rights reserved.PII: S0012-365X(02)00254-6  2  S. Brunetti et al./Discrete Mathematics 257 (2002) 1–13 to gcd( m 1 ;m 2 ) and to Raney’s Lemma . We introduce the following cycle lemma: if gcd( m 1 ;m 2 )= d  and  w = w 1 w 2  :::w n  is a permutation of   X  n , exactly  d  of thecyclic shifts:  w 1 w 2  :::w n ,  w 2  :::w n w 1 ;:::;w n w 1  :::w n − 1  have an inversion number congruent to  h  modulo  n , with  h ≡ inv( w ) +  jd (mod n ), and 0 6  j¡n=d .For any 0 6  j¡n=d , let  I n;j  =  d − 1 i =0  I n;i +  jd . By the cycle lemma, if gcd( m 1 ;m 2 )= d ,then |   I n; 0 | = |   I n; 1 | =  ···  = |   I n;n=d − 1 | =  dn   nm 1  : We wish to point out that, if gcd( m 1 ;m 2 )=1, then | I n; 0 | = | I n; 1 | =  ···  = | I n;n − 1 | = 1 n   nm 1  :  (1)A classical result of MacMahon  provides the following formula for the distributionof the inversion statistic over the set  X n  of all permutations of   X  n :  w ∈ X n q inv( w ) =   nm 1  q where   nm 1  q is a Gaussian binomial coecient.Therefore, by equipartition (1), the sum of the coecients of    nm 1  q =  l ¿ 0 p l ( m 1 ;m 2 ) q l with  l  congruent to  h  modulo  n  is (1 =n )  nm 1  , where 0 6 h¡n . For example, the multiset {  x m 1 1  ;x m 2 2  } , with  m 1  =7 and  m 2  =4 gives  117  q which is equal to 1+  q + 2 q 2 + 3 q 3 + 5 q 4 + 6 q 5 + 9 q 6 + 11 q 7 + 14 q 8 + 16 q 9 + 19 q 10 +20 q 11 + 23 q 12 + 23 q 13 + 24 q 14 + 23 q 15 + 23 q 16 + 20 q 17 + 19 q 18 + 16 q 19 + 14 q 20 + 11 q 21 +9 q 22 + 6 q 23 + 5 q 24 + 3 q 25 + 2 q 26 +  q 27 +  q 28 =30 30 30 30 30 30 30 30 30 30 30 and since  d =1,  n =11, we obtain:  k  ¿ 0  p h +12 k  (7 ; 4)=30=  111  117  , for each 0 6 h¡ 10.  S. Brunetti et al./Discrete Mathematics 257 (2002) 1–13  3 Then, we show a further property of the inversion statistic. Let  J m 1 ;h  be the classof permutations of   X  n  having the rst element equal to  x 1  and the inversion number congruent to  h  modulo  m 1 : J m 1 ;h  = { w =  x 1 w 2  :::w n ∈ X n  :inv( w ) ≡ h (mod m 1 ) } ; with 0 6 h¡m 1 . For any 0 6  j¡m 1 =d , let  J m 1 ;j  =  d − 1 i =0  J m 1 ;i +  jd . We have the followingsub-lemma:if gcd( m 1 ;m 2 )= d  and  w = w 1 w 2  :::w n  is a permutation of   X  n , then exactly  d  of the cyclic shifts:  w 1 w 2  :::w n ,  w 2  :::w n w 1 ;:::;w n w 1  :::w n − 1  have the rst elementequal to  x 1  and inversion number congruent to  h  modulo  m 1 , with  h ≡ inv( w ) +  jd (mod m 1 ), and 0 6  j¡m 1 =d .From this lemma, we deduce that if gcd( m 1 ;m 2 )= d , then |   J m 1 ; 0 | = |   J m 1 ; 1 | =  ···  = |   J m 1 ;m 1 =d − 1 | =  dm 1   n − 1 m 1  − 1  : Since ( d=m 1 )  n − 1 m 1  =( d=n )  nm 1  , we have the interesting result |   J m i ;h 1 | = |   I n;h 2 | =  dn   nm 1  ; where 1 6 i 6 2, 0 6 h 1 ¡m i =d  and 0 6 h 2 ¡n=d .We now give a summary of the paper. In Section 2, we prove the cycle lemma and some enumerative results. In Section 3, we show that, from the results of Section 2, the sub-lemma and a property which presents a curious analogy with the Chung–Feller Theorem follow [2,4]. We point out that this sub-lemma may be considered as a generalization of the cycle lemma dened by Narayana in . Finally, in Section 4, some applications of our results concerning the Gaussian binomial coecient are found by using the result of MacMahon. 2. A cycle lemma Assume, without loss of generality, that the elements of the multiset  X  n  are  x 1  =1 and  x 2  =2 (i.e.,  X  n  = { 1 m 1 ; 2 m 2 }  and  n = m 1  + m 2 ). Let  w = w 1 w 2  :::w n  be a permutation of  { 1 m 1 ; 2 m 2 } . We dene the operator   #  in the following way:  # ( w )= w 2 w 3  :::w n w 1 , whichcarries out a cyclic shift of   w . Therefore, the inversion number of   # ( w ) is such that •  if   w 1  =1, then inv( # ( w ))=inv( w ) +  m 2 , •  if   w 1  =2, then inv( # ( w ))=inv( w ) − m 1 .Thus,  i  consecutive applications of   #  produce •  if   w i  =1, then inv( # i ( w ))=inv( # i − 1 ( w )) +  m 2 , •  if   w i  =2, then inv( # i ( w ))=inv( # i − 1 ( w )) − m 1 .  4  S. Brunetti et al./Discrete Mathematics 257 (2002) 1–13 Table 1The cyclic shifts of   w  =112111212111 and their corresponding inversion number  Cyclic shifts inv inv(mod12) w =112111212111 14 2 # 1 ( w )=121112121111 17 5 # 2 ( w )=211121211111 20 8 # 3 ( w )=111212111112 11 11 # 4 ( w )=112121111121 14 2 # 5 ( w )=121211111211 17 5 # 6 ( w )=212111112111 20 8 # 7 ( w )=121111121112 11 11 # 8 ( w )=211111211121 14 2 # 9 ( w )=111112111212 5 5 # 10 ( w )=111121112121 8 8 # 11 ( w )=111211121211 11 11 Since  − m 1 ≡ m 2  (mod n ), the previous relations giveinv( # i ( w )) ≡ inv( w ) − m 1 i (mod n ) :  (2) Now, we require to determine the number of cyclic shifts of   w  whose inversion number is congruent to  h  modulo  n , with 0 6 h 6 n  −  1, that is the number of   i  for whichinv( # i ( w )) ≡ h (mod n ), with 0 6 i¡n . This is equivalent to the determination of thenumber of solutions of congruenceinv( w ) − m 1 i ≡ h (mod n ) :  (3)Let us consider the following classical theorem [8, p. 29]: Theorem 1.  Let  gcd( a;n )= d .  Then the equation  ax ≡ b (mod n )  has no solutions if   d does not divide  b .  If   d  divides  b  then it has exactly  d  solutions .Since gcd( m 1 ;m 1  +  m 2 )=gcd( m 1 ;m 2 ), from Eq. (3) and this theorem, where  a = − m 1 ,  x = i  and  b = h − inv( w ), we deduce the following cycle lemma: Cycle Lemma 2.2.  Let  gcd( m 1 ;m 2 )= d  and   w  be a permutation of   X  n .  Exactly  d  of the cyclic shifts  w;# 1 ( w ) ;:::;# n − 1 ( w )  have inversion number congruent to  h  modulo n ,  with  h ≡ inv( w ) +  jd (mod n ),  and   0 6  j¡n=d .For example, consider the multiset  { 1 m 1 ; 2 m 2 } , with  m 1  =9 and  m 2  =3. Table 1shows the cyclic shifts of the permutation  w =112111212111 and their corres- ponding inversion number modulo  n =12. Note that inv( w )=14,  d =gcd( m 1 ;m 2 )=3 and 3 of the cyclic shifts  w;# 1 ( w ) ;:::;# 11 ( w ) have inversion number con-gruent to  h  modulo 12, with  h =2 ; 5 ; 8 ; 11 (i.e.,  h ≡ inv( w ) + 3  j (mod12) and0 6  j¡ 4).In some cases, some of the cyclic shifts of a permutation are equal. For example, the permutation  w =211121112111 is made up of a subsequence repeated three times in  w ,  S. Brunetti et al./Discrete Mathematics 257 (2002) 1–13  5Table 2The cyclic shifts of   w  =211121112111 and their corresponding inversion number  Cyclic shifts inv inv(mod12) w =211121112111 18 6 # 1 ( w )=111211121112 9 9 # 2 ( w )=112111211121 12 0 # 3 ( w )=121112111211 15 3 which we call  period   and this is  T   =2111. The number of dierent cyclic shifts of   w  isequal to the length of the period (i.e., four) and these sequences are  w =211121112111, # ( w )=111211121112,  # 2 ( w )=112111211121 and  # 3 ( w )=121112111211. In this case,inv( w )=18,  d =gcd( m 1 ;m 2 )=3 and there is only one distinct cyclic shift of   w  whoseinversion number is congruent to  h  modulo 12, with  h =6 ; 9 ; 0 ; 3 (see Table 2). We  point out that, in any case, we have the same number of distinct cyclic shifts of   w whose inversion number is congruent to  h  modulo  n , with  h ≡ inv( w ) +  jd (mod n ),and 0 6  j¡n=d .Let us denote the set  { w;# ( w ) ;:::;# ( n − 1) ( w ) }  by  S  w . Since the family  { S  w :  ∀ w ∈ X n } is a partition of the set  X n  (i.e.,  S  w  ∩ S  w ′  = ∅  or   S  w  = S  w ′  for each pair   w;w ′ ∈ X n ),from Lemma 2.2 we deduce that  #  is a bijection between  I n;i  and  I n;i +  jd , for each0 6  j¡n=d . Consequently, | I n;i | = | I n;i + d | =  ···  = | I n;i +  jd | =  ···  = | I n;i +( n=d − 1) d | for each 0 6 i¡d . The multiset  { 1 9 ; 2 3 }  of the previous example gives | I n; 0 | = | I n; 3 | = | I n; 6 | = | I n; 9 | ; | I n; 1 | = | I n; 4 | = | I n; 7 | = | I n; 10 | ; | I n; 2 | = | I n; 5 | = | I n; 8 | = | I n; 11 | : The sets  I n; 0 ;:::; I n;n − 1  are disjoint, thus if   I n;j  denote  I n;jd ∪ I n; 1+  jd ∪ ··· ∪ I n;d − 1+  jd , with 0 6  j¡n=d , we have |   I n; 0 | = |   I n; 1 | =  ···  = |   I n;n=d − 1 | : The family  I n; 0 ;   I n; 1 ;:::;   I n;n=d − 1  is a partition of the set of all the permutations of   X  n ,and so: Theorem 3.  If   gcd( m 1 ;m 2 )= d ,  then  |   I n;j | =( d=n )  nm 1  ,  where  0 6  j¡n=d . Remark 4.  The  major  of a permutation  w ,  maj ( w ), is the sum of all integers  j  suchthat 1 6  j 6 n − 1 and  w  j ¿w  j +1  (see ). MacMahon  proved that  w ∈ X n q maj ( w ) =  w ∈ X n q inv( w ) =   nm 1  q :

Jan 23, 2019

#### 797-1997-1-PB

Jan 23, 2019
Search
Similar documents

### A HyFlex Module for the Permutation Flow Shop Problem

View more...
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us. Thanks to everyone for your continued support.

No, Thanks