# A NOTE ON INDEX SUMMABILITY FACTORS OF FOURIER SERIES

Description
Author : U.K. Misra, Mahendra Misra and B.P. Padhy Published in : Journal of Computer and Mathematical Sciences ABSTRACT A theorem on index summability factors of Fourier Series has been established
Categories
Published

## Download

Please download to get full document.

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
A NOTE ON INDEX SUMMABILITY FACTORSOF FOURIER SERIES U.K. Misra 1  , Mahendra Misra  2  and B.P. Padhy  3 1  Department of Mathematics Berhampur University Berhampur-760007, Orissa (India) e-mail: umakanta_misra@yahoo.com 2 Principal Government Science CollegeMlkangiri, Orissa 3  Roland Institute of TechnologyGolanthara-760008, Orissa (India) e-mail: iraady@gmail.com ABSTRACT A theorem on index summability factors of Fourier Series has been established  Key words:  Summability factors, Fourier series. AMS Classification No: 40D25 J. Comp. & Math. Sci. Vol. 1(1), 67-70 (2009).1. INTRODUCTION Let   n a  be a given infinite serieswith the sequence of partial sums   n s . Let   n  p  be a sequence of positive numbers suchthat(1.1)  , 0      Pnas pP inr vn  1,0     i p i The sequence to sequence transformation(1.2)    nvvvnnn  s pPt  0 1 defines the sequence of the   n  p N  ,  -meanof the sequence   n s  generated by the sequenceof coefficients   n  p .The series   n a  is said to be summable 1,,   k  p N  k n , if (1.3)        111 nk nnk nn t t  pP In the case when 1  n  p , for all k and n ,1  k n  p N  ,  summability is same as 1, C   summa- bility. For k n  p N k  ,,1   summability is same  [ 68 ] as n  p N  ,  - summability..Let   n    be any sequence of positivenumbers. The series   n a is said to be summable 1,,,   k  p N  k nn    , if (1.4)     111 nnnk n  t t    .Clearly, k nnn  pP p N  ,,  is same as 1,,   k  p N  k n and 1 1,, n  p N   is n  p N  , .Let    t  f   be a periodic function with period 2  and integrable in the sense of Lebesgue over       ,  . Without loss of generality, we mayassume that the constant term in the Fourier series of  )( t  f   is zero, so that(1.5) )( t  f  ~ )()sincos( 11 t  Ant bnt a nnnnn      2. Known Theorem :  Dealing with 1,,   k  p N  k n , summabilityfactors of Fourier series, Bor  1  proved thefollowing theorem: Theorem-A :  If   n    is a non-negativeand non-increasing sequence such that    nn  p    , where   n  p  is a sequenceof positive numbers such that   nasP n and    nvnvv  Pt  AP 1 )(0)( . Then the factored Fourier series   nnn  Pt  A    )(  is summable 1,,   k  p N  k n .We prove an analogue theorem on k nn  p N     ,,  - summability, 1  k  , in thefollowing form:3. Main Theorem : Theorem:  Let   n  p  is a sequence of  positive numbers such that  n  p pP 21   n  p ....  as  n  and   n    is a non-negative, non-increasing sequence such that    nn  p    . If (3.1) (i).    nvnvv  Pt  AP 1 )(0)( (3.2) (ii).             11111 ,0 mvn vvnvnk n P pP p      mas  and  (3.3) (iii).   vvnvvn  pP        0 1  ,then the series   nnn  Pt  A    )(  is summable 1,,,   k  p N  k nn    . and   n   , a sequence of  positive numbers.4. Required Lemma : We need the following Lemma for the proof of our theorem.  Lemma :  If   n    is a non-negative  [ 69 ] and non-increasing sequence such that    nn  p    , where   n  p  is a sequence of  positive numbers such that   nasP n then   nasP nn )1(0    and     nn P    .5. Proof of the Theorem : Let )(  xt  n  be the n -th   n  p N  ,  meanof the series ,)( 1   nnnn  P x A     then by definitionwe have       nvvr r r r vn nn  P x A p P xt  00 )(1)(         nr vvnr nr r r n  pP x A P   0 )(1   r nr r nr r  n PP x A P      0 )(1 .Then       nr r r r r n nnn  x APP P xt  xt  01 1)()(         nr r r r r n n  x APP P 1011 )(1   )( 111  x APPPPP nr r r r nr nnr n                    nr r r r nr nnvn nn  x APPPPP PP 1111 )(1             11111 1  nr r nr nnr n nn PPPP PP            1 )( r vvv  x AP , using partial summationformula with 0  o  p .         11111 1  nr r r nr nnr n nn PP pP p PP           11211 nr r r nr nnr n  P pPP p    , using(3.1)  4,3,2,1,  nnnn  T T T T    , say..In order to complete the proof of thetheorem, using Minkowski's inequality, it issufficient to show that     1,1 .4,3,2,1, nk ink n  i for T     Now, we have          12121111,1 1 mnmnk nvvvvn k nk nk nk n  P pPT                 12111 1 mnnvk vk vvnnk  P pP              111 1 k nvvnn  pP , using Holder's inequality.          121111 11 mnk vvvv nvvnnk n  PP pPO               1111 1 mvn nvnk nmvvv P pPO           mvvv  pO 1 )1(    (using 3.2)    masO ),1( .          1212111112.1 1 mnmnk nvvvvn k nk nk nk n  P pPT                 1211111 1 mnnvk vk vvnnk n  P pP             11111 1 k nvvnn  pP   11211111 )(1)1(       k vvmnvvnvvnnk n  PP pPO                 mvmvn nvnk vv P pPO 111111 )1(       ,)1(0 1    mvvv  p    using (3.2)    mas ,)1(0 . Now,          121211113,1 1 mnk mnvvnvvnk nk nk nk n  P pPT           1111121111 11              k nvvnnmnk vvnvvnnk n  pPP pP          1121111 11        k vvmnvvnvvnnk n  PP pPO          ,11 121111     mnvvnvvnnk n  P pPO      by the lemma          nvnmvnnnmvvv P pPO 11111 )1(          mvvv  p 1 )1(0    , using (3.2)    m ,)1(0 .Finally,       1212114,1 mnmnk nk nk nk nk nk n PP pT              211 k vvnv nv PP      k mnvvvn nvk nk n  P pP         1211111 1)1(0     ,using (3.3)  1211111 1)1(0      mnvnnvnk n  pP       11111 1        k nvvnnk vv  pPP      vvnvvnnnnk n  P pP        1111121 1)1(0     mas ),1(0 , as aboveThis completes the proof of the theorem. REFERENCE 1.Bor Huseyin: On the absolute summabilityfactors of Fourier Series, Journal of Compu-tational Analysis and Applications, Vol. 8, No. 3, 223-227 (2006). [ 70 ]

Jul 23, 2017

#### CSS3

Jul 23, 2017
Search
Similar documents

View more...
Tags

## Analysis

Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us. Thanks to everyone for your continued support.

No, Thanks