Documents

A Novel Low Reynolds Number Airfoil Design for Small Horizontal Axis Wind Turbines

Description
In order to improve the performance of small horizontal axis wind turbines at low wind speed, this study designs a novel airfoil section with an optimum transition ramp through multipoint inverse design method. A viscous analysis code is used to close the design loop. Further, Shear stress transport-transition model in ANSYS-Fluent is employed with modified constants to analyze the flow and aerodynamic performance of the airfoil at Reynolds numbers 60 000, 100 000, 200 000, 300 000 and 500 000. Next we consider the designing of a 2m rotor from the new airfoil section using an evolutionary algorithm for optimization. The power coefficient and self starting of a small 2m wind turbine is improved significantly with the chosen generator resistive torque of 0.5Nm, the new airfoil section and the optimization technique for finding the optimal values of the parameters.
Categories
Published
of 17
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  A Novel Low Reynolds Number Airfoil Designfor Small Horizontal Axis Wind Turbines by Haseeb Shah, Sathyajith Mathew and Chee Ming Lim R EPRINTEDFROM WIND ENGINEERING  V OLUME 38, N O . 4, 2014 M ULTI -S CIENCE P UBLISHING C OMPANY 5 W ATESWAY ã B RENTWOOD ã E SSEX CM15 9TB ã UKT EL : +44(0)1277 224632 ã F AX : +44(0)1277 223453 E- MAIL : mscience@globalnet.co.uk ã W EB S ITE : www.multi-science.co.uk  WIND ENGINEERING => 38, $. 4, 2014  377P392377 A Novel Low Reynolds Number Airfoil Design for Small Horizontal Axis Wind Turbines * Haseeb Shah, Sathyajith Mathew and Chee Ming Lim Centre for Advanced Materials and Energy Sciences, Universiti Brunei Darusslam, Jalan Tingku link,BE1410, Brunei Darussalam.E-mail: H.shah.nuaa@hotmail.co.uk  ABSTRACT In order to improve the performance of small horizontal axis wind turbines at low wind speed, this study designs a novel airfoilsection with an optimum transition ramp through multipoint inverse design method. A viscous analysis code is used to closethe design loop. Further, Shear stress transport-transition model in ANSYS-Fluent is employed with modified constants to analyzethe flow and aerodynamic performance of the airfoil at Reynolds numbers 60 000, 100 000, 200 000, 300 000 and 500 000.Next we consider the designing of a 2m rotor from the new airfoil section using an evolutionary algorithm for optimization.The power coefficient and self starting of a small 2m wind turbine is improved significantly with the chosen generator resistivetorque of 0.5Nm, the new airfoil section and the optimization technique for finding the optimal values of the parameters. Keywords: Low Re airfoil, small wind turbine, separation bubble, ANSYS-Fluent, multi objective optimization Received 5 /  1 /201 4  ; Revised 1/3/2014; Accepted 13/3/2014 1. INTRODUCTION E=J ?@? @> ? ?  ? J =J ?  =  ? @ @ @ @> 2.6 % @J @ 18 % @ @=T =J @@? J 2050, @? @I??@?= E?J A?J (IEA) 1. I? @? @ = @K@?=  ? ? (HA*)? >- (#) ?, >== HA*  =@ @? @ =J >@ @= ?  S?= ?J >T ?  @> @ ? =@?,  @??, @ =?- ? J>.>== HA*  ? J IEC 61400P2 2   @@   @ ?@ >@ ? 200> 2 =? @ @ @ @ 50< ??  @= =@ 1000 AC @ 1500 DC 2.C@> @ = HA*, >== HA* >?=J  @  K, @  =@ J?@=?> (  R& O 500 000) =@?  ? ? @  =. F@ >=J @? >== >? ? @ =J @? =  3P5. #@@, >== HA*  @? ?==  =@@? @ ?@?   ?J ?  =@@? @ ?@ =J    ? 5.    >?   ?     >== ? >? : 1) E = = ? 2) E=J  5, 6.  ?   = >?=J =?  = >=J =?  ?   = 6. #,   = > ? =   =  --  (  L/D )  >  ? ( C   L ). ? ( 9  ) ? ?  J?>    = >      ? ? ?  >>==J  :(1)  Q 0 ?   @ (> ? $>) @>  ?@, Q   @@ J  = ?  J    @@ ? 5. F@> E.1  ? @>? @ >== HA* a   =  (Q – Q )J sr *C?? A: H , C?  A? #= ? E?J ?, +? B? D=>,=? ?< =?<, BE1410, B? D=> H..?@>=..<  ?   >@ J >?>K?  @= ? @  @@ ? ??  @J?>@ @>  =. *  = J ?  ? @=  = ? = >= ? @J?> @>?. A@? @ @@ 5  @J?> @ @?  ? =?  == J ? = = @? @  = ?   @?   ?= @ < ( α ). * @= @  @ @  @ == @? @ @>  ?@ ??@ ?= ? ? @>? ?   @   =@  @= 5. #@@,   @ ?@  @J?> @  ? =  @@ ? @ @? @.*@?= @= ? @ ==-=    $ACA ? $AA   ?>?=J @ @  H (  R& > 3 × 10 6 ) ?/@ >> (5 × 10 5 <  R& < 3 × 10 6 )  R& . E>=@J>? @ @= @? >== HA*  @ @  @@ @>?  @ =>? @? =( B)  =@  R& 7 8 9.  ? @ =@  R& @= @>? ? =  ==J @ = >@= , J = @ @?@==  ? = =?. 10P12. A ?> @ > ? @? ?  ? ? ??= @ >== HA* 7, 9, 13.   @?  =@  R& @=   @  ? (@ <? @ 5 % )   @? < ?  =?  ?  ?   ? (A&G)@?    @  @= 5, 8, 14. A? @>K @=  >>> <? @ 4 % ? C   L = ?? @> 1.28, 1.38, 1.41 ? 1.45   R& = 55 000, 70 000 ? 100 000  ? ?=J@>? @ >== HA* =@? 15. G00 @=  (G6040PG6043) ?J GM ? = 9 @ >== HA* =@?  C   L = ?? @> 1.4P1.65@? ?  100 000P500 000. 822 ? 823 @=  < ?  ?? @ >===  HA*   @ ? 1P5 < 16. B-3 @=  =@ ? @ 7 >, 10 < >== ? ? J BJ ? &@ 15. *  @= E387, F63137, 822,834, D2030, ? H3055   @   R& ? @ 100 000P500 000 J = ?#G?? 13 @ >== HA* =@?. @  @= ==J ? @ >==HA*  == =>. #@@    =< @  @   R& ? 10 000P100 000 4, 5. I? ? @ @ >@  @>? @  >== HA*, ? @=  ? ? ? ??  @? J >=@? ? >@ ? &%F%I . * @=  ? @   @ ? ? @  = @  =   @?. A @? ?@@? @ =@ J?@= ?>@J?>  @ ? @? 2 ?  @ @ ? =@ =   =@. @? 3 =  @= ?. I?= @J?> @>? @ ? @=>= ? @ ?=J @ -@=   ? @? 4. F ? @? 4, A$-CFD>@   @ >=  =@ @, ?@? =@@? ? @J?> @>? @ ? @=. I? @? 5  ?= @=@?J @>K@? >@   @ ? ?  2 > >== HA* @?  >=@J>? @  ? @=. F?==J, @?=@?  ? ? @? 6. 2. LOW REYNOLDS NUMBER AIRFOIL AERODYNAMICS  J?= ?> = ? J?>  ? ? ?  >?J J?> =? ? >== ? ?, >- ?>?? = ? ==? 3P21. F=   R& ≤ 500 000  ?==J ? J ? ? >? ?   ?J =J,>? =>? ? = ( B).  ? B  >?=J  J ?=J  = ?  =? = ?  ; =  ??  ?   =J  ?? F.1. B  = ? =?   = ?  =?   ? >  =  (/). A  R& 100 000 =? B  ?==J ?     20P30 %    =,   B >J >   J?= ?> 14.D?  ? = >? J =J ??  ?   ( C   D ) ?? C   L  ?   >?   B. A?  D= 17, <? ?  ?  J ? !L>L? ?= ?J =J ?:(2), 3 &   ?J =J  =J, <   ?J =J ?,  H     ? ;   >>?> <?. <? ? C   '  ?  =  => K, ??= ?J ?? >:(3) ud ud C  H udud  1 ( )2 ee f ee 22 r q r q x q x  = - ; uu H  uu ( ) eeee 22 r q r q  D- D 378A $=  J?= $> A= D?  >== HK?= A ? ?  , = >>?>  ,  H  ? 3 & ?  ?   ?.(4),  *   =>? <?.   ? ?    =>? ?=  ?=      >  ρ  3 &  * ?  =J >  3 & . = ==?   =  ? ? F.2. F  =J ?  ?  ?>?   ?>. ? >  4, ? ? ?    ?= ?? ,     ? =J. A ? ? >?,  = ?   =J ?  ? > = > ?   ?>?, ?    B ?   =?.   3 >?  >== B,  > >== > ?   ?>?. ?? > =>?  =? =  >     >?>  B ?  1. A?=J, ?    =J ? >> = K ? ??=J ? >> ?? =?  ?>?>K  =  ?>? ? >J  =  C 2 ? F.2. I    ? ?=     R& ? ?=  <  = >? ? ? ?? ?  B. ?  ?= B  > J?> >? > =  =  =  ? ==J   ?? 14, 17P19.  ?=    1).  >?= =,  2). C? >?  ?,  3). ?? >.  >> ? ?=J  =  ? =, ,  = > ?   ? ??? = 5, 6.A ?? >  ==J  ==,   ? ?      =. I?  ? , ?=J ?  ?? >  ? (F.3). ?? > =K ? > ?  ?? > =>?  =? ==? ?  >== B ?   ==. I   >K  >= =>??   B = ?=  =  R& ?  == ==J ?  <? ? ,  ? ? F 2- 1. I?   ?   L/D  >  =  =,  ??     =J ; u u u e e e 2 * r q r d  D - D u e 2 r q  Figure 1. Schematic illustration of laminar separation bubble over airfoil suction surface [adapted from 24]Figure 2. Effects of transition location on drag [adapted from 17] WIND ENGINEERING => 38, $. 4, 2014  377P392379
Search
Tags
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks