Documents

A practical method for the estimation of oil and water mutual solubility.pdf

Description
Fluid Phase Equilibria 355 (2013) 12–25 Contents lists available at ScienceDirect Fluid Phase Equilibria journal homepage: www.elsevier.com/locate/fluid A practical method for the estimation of oil and water mutual solubilities Marco A. Satyro a,∗ , John M. Shaw b , Harvey W. Yarranton c a b c Virtual Materials Group, Inc., Calgary, Alberta, Canada University of Alberta, Edmonton, Alberta, Canada University of Calgary, Calgary, Alberta, Canada a r t i c l e i n f o Article history: Receiv
Categories
Published
of 14
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  FluidPhaseEquilibria 355 (2013) 12–25 ContentslistsavailableatScienceDirect Fluid   Phase   Equilibria  journalhome   page:www.elsevier.com/locate/fluid A   practical   method   for   the   estimation   of    oil   and   water   mutualsolubilities Marco   A.   Satyro a , ∗ ,    John   M.   Shaw b ,   Harvey   W.   Yarranton c a VirtualMaterialsGroup,Inc.,Calgary,Alberta,Canada b UniversityofAlberta,Edmonton,Alberta,Canada c UniversityofCalgary,Calgary,Alberta,Canada a   r   t   i   c   le   i   n   f   o  Articlehistory: Received16April2013Receivedinrevisedform20June2013Accepted22June2013 Available online 2 July 2013 Keywords: SolubilityWaterHydrocarbonActivitycoefficientmodelEquationofstate a   b   s   t   r   a   c   t A   simple   model   is   proposed   for   the   calculation   of    oiland   water   mutual   solubilities   asa   function   of temperature   using   the   hydrocarbon   specific   gravity   and   Watson-K   factor   as   correlating   parameters.   Themodel   parameters   were   determined   using   a   single   consistent   set   of    high   quality   solubility   data   collectedat   the   water   orhydrocarbon   saturation   pressures   at   temperatures   from   273   K   and   573   K   but   primarilyfrom   298   K   to   398   K.   The   hydrocarbon   in   water   solubilities   ranged   over   11   orders   of    magnitude   while   thewater   in   hydrocarbons   solubilities   ranged   over   4orders   of    magnitude.   Hydrocarbon   types   ranged   fromlow   molecular   weight   paraffins   such   asn-pentane   to   heavy   aromatics   such   asanthracene.   Theaverageabsolute   error   in   the   estimated   solubilities   of    water   in   hydrocarbons   over   621   data   points   was   34%   andapproached   the   suggested   underlying   uncertainty   in   the   reference   data   (30%).   The   average   absolute   errorinthe   estimated   solubilities   of    hydrocarbons   in   water   over   964   data   points   was88%   and   exceeded   thesuggested   underlying   uncertainty   in   the   reference   data   (30%).Themodel   can   be   extended   to   higher   temperatures   using   aprocedure   based   onactivity   coefficientsor   equations   of    state   andis   easily   adapted   to   work   with   ill-defined   hydrocarbon   mixtures.   Predictionand   correlation   of    solubilities   of    water   in   kerosene,   heavy   oils,   and   bitumen   were   made   at   tempera-tures,   pressures,   and   compositions   far   removed   from   the   srcinal   data   used   for   model   construction.   Thecorrelation   failed   near   the   critical   temperature   of    water   because   under   these   conditions,   the   propertieshydrocarbon-rich   phases   in   the   mixtures   on   which   the   correlation   is   based   (Type   IIandType   IIIa   phasebehaviour   according   to   the   vanKonynenburg   and   Scott   naming   scheme)   and   those   of    water   +   heavyhydrocarbons   (Type   IIIb   phase   behaviour)   diverge.   A   separate   NRTL    based   correlation   is   presented   for   themutual   solubility   of    water   +   heavy   oilsattemperatures   close   to   the   critical   temperature   of    water. © 2013 Elsevier B.V. All rights reserved. 1.Introduction Theestimationofmutualsolubilitiesofwaterandoilisanimportantpartofthedevelopmentofreliablesimulationmod-els.Theamountofwaterdissolvedinhydrocarbonsdefinestheamountofwatersidedrawsfromcrudedistillationtowerswhiletheamountofdissolvedhydrocarbonsinaqueousstreamsisimpor-tantforthedesignofwatertreatmentsystems.Watercanalsobeanattractivesolventforoilupgradingathighpressuresandtem-peratures,andreasonableestimatesformutualsolubilitiesundertheseconditionsarevitalforthedesignofthereactorandasso-ciatedwaterandhydrocarbonrecoverysystems.Thermodynamicmodelsusedforthesimulationofhydrocarbonprocessescanusu-allyprovidereliableestimatesofwaterinhydrocarbonsolubilities; ∗ Correspondingauthor.Tel.:+14033972031. E-mailaddress: marco.satyro@virtualmaterials.com(M.A.Satyro). however,estimatesforthesolubilityofhydrocarbonsinwaterareusuallypoor[1].Severaltechniquesfortheestimationofwatersolubilityareavailable,basedonempiricalequationssuchastheonesfoundintheAPIhandbook[2],Tsonopoulos[3,4],anddeHemptinneetal. [5].Ingeneral,thesetechniqueshavesomeorallofthefollowinglimitations:availableonlyforn-alkanes;requireconstantstobedeterminedforindividualcompounds;limitedtoasingletemper-ature,usually25 ◦ C;parametersdependentonmolecularstructureinformation[6].Ontheotherhand,simplecubicequationsofstate donotsufferfromtheselimitationsandcanbetunedtoproviderea-sonablerepresentationsofwatersolubilityinhydrocarbonsusinginteractionparametersinthevicinityof0.5[5].Theestimationofsolubilitiesofhydrocarbonsinwaterismorecomplicatedandfewmodelsarecapableofpredictingthesolubil-ityofhydrocarbonsinwater[5,7].Therearesomemodelsavailable basedonlimitedcarbonnumberrangesat25 ◦ C[5,8–18]withspecificconstantsdeterminedbasedonchemicaltypesorgroup 0378-3812/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.fluid.2013.06.049  M.A.Satyroetal./FluidPhaseEquilibria  355 (2013) 12–25 13 Nomenclature a parameterforEq.(15) b parameterforEqs.(6)or(7)and(14)or(16) c  parameterforEqs.(6)or(7)and(14)or(17) d parameterforEqs.(6)or(7)and(14)or(18) e parameterforEq.(19)  f  Padeapproximantterm,Eq.(4)  g  Padeapproximantterm,Eq.(5) h enthalpyofsolution np numberofdatapoints OF  objectivefunctionfordataregression  p 0 ,  p 1 ,  p 2  empiricalconstantsinEq.(2) R gasconstant SG specificgravity T  absolutetemperature T  0  referencetemperature,298.15K T  b  normalboilingpoint(K)  x solutemolefraction W  k  Watson(UOP)K Subscriptshc  hydrocarbon I  datapointindex s solvent w water Superscriptscalc  calculatedvalue IUPAC  experimentalorrecommendedsolubilityvaluefromIUPAC ∝ valueatinfinitedilution Greeksymbols ˛   parameterforEq.(9) ˇ parameterforEq.(8)  K  w  WatsonKdeparturefromparaffinreference,Eq.(8)  SG specificgravitydeparturefromparaffinreference,Eq.(9)   activitycoefficient   NRTLinteractionparametercontributions[19–21].Currentlyavailablemodelsarenoteasily extendedtooilandwatermixtureswheretheoilischaracterizedusingdistillationcurves.Thepseudo-componentsdonotprovideenoughinformationforthedefinitionofachemicaltypesincetheyactuallyrepresentthemixtureofseveralcompoundsofdifferentchemicalnaturethatboilatsimilartemperatures.Thesamehandi-capappliestogroupcontributionbasedmethods.Finally,currentlyavailablemethodsdonotprovidemuchinformationforcriticalevaluationofthequalityoftheirpredictions.Simplecubicequationsofstateusingclassicquadraticmix-ingrulesarenotcapableofpredictingaccuratemutualsolubilitiesbecausetheyuseasymmetricinteractionparameter.Thisinade-quacyhasbeenlongknown[22]andspecialinteractionparameters mustbeusedforthecorrectrepresentationofhydrocarbonsolu-bilitiesinthewater-richphase.Theseinteractionparametersareusuallymuchsmallerthanthoserequiredtomodelthesolubilityof waterinahydrocarbon-richphaseandpointtotheneedformoreadvancedasymmetricmixingrules[23,24].Therecentpublicationofcarefullyscreenedwater+hydrocarbonmutualsolubilitydatabyMaczynskiandcoworkers[8–18]providesanextensiveandconsistentsetofdataforthedevelopmentofsolubilitymodelsandprovidedmuchofthemotivationforthisstudy.Theobjectiveofthisworkistodevelopafullypredictivemodelfortheestimationofoilandwatermutualsolubilitiesapplicabletopetroleumandnotjustdefinedcompo-nents.Themodelistohaveabuilt-intemperaturedependencyandmustbeeasilyintegratedintoaprocesssimulationenvironmentwhereitcanbeusedtoprovideinformationforthecalculationof modelspecificinteractionparametersasarecommonlyusedinactivitycoefficientorequationofstatemethods. 2.Database Theconstructionofaconsistentdatabaseformodeldevelop-mentwasgreatlyfacilitatedbytheavailabilityofanextensive,criticallyevaluatedseriesofpapersonhydrocarbonsandwatersol-ubilitypublishedbyMaczynskiandcoworkers[8–18].Thisdata compilationreviewedthepreviousextensiveworkdoneintheIUPACSolubilitySeries,Volumes37and38[25,26]withcorrections andincludednewpublishedworkupto2006.Thisrecentworkprovidessolubilitydataasafunctionoftemperatureforparaffins,naphthenes,aromatics,andotherhydrocarbonsrangingfromC5toC36hydrocarbons.Theavailabledatapointswereindividuallyexaminedandqual-ityidentifierswereassignedtothem.Referencedataareprovidedbasedonspeciallyconstructedcorrelationfunctionsforspecificchemicalfamilies[8].Experimentaldatadifferingfromtherefer- encedatabylessthan30%atsimilartemperaturesfromdifferentsourcesareclassifiedas“recommended”whilethosethatdif-ferfromtherecommendeddatabymorethan30%areclassifiedas“doubtful”.Theircriteria,basedonananalysisofcycloalkane,alkane,isoalkanesandalkenes(hydrocarboninwater)andalkanesandalkenes(waterinhydrocarbons),wereappliedtosolubilitiesofhydrocarbonsinwateraswellaswaterinhydrocarbons.Ifval-uesfromonlyasinglelaboratoryareavailable,eveniftheyagreewiththereferencedata,theyareclassifiedas“tentative”.Ifval-uesareavailablebutaredeemedsuspiciousbytheinvestigators,theyareclassifiedas“rejected”.Inthisworkonly“recommended”or“tentative”datapointswereusedinthedevelopmentofthemodel.Theuncertaintyofindividualdatapointsisnotaccessibleandconsequentlystatisticalweightingcannotbeappliedtodeter-minemodelparameters.HydrocarbonslighterthanC5werenotincluded.Tables1and2summarizeallthedataaswellthetem-peratureandcompositionrangesusedintheconstructionofthemodel. 3.Modeldevelopment Theprincipleobjectiveistodevelopapracticalmodelthatcanbeusedtoestimatemutualsolubilitiesforhydrocarbon+watermixturesattemperaturesfoundincommonchemicalprocesses.Themethodshouldbeeasilyimplementedasanestimationproce-dureforthedeterminationofinteractionparametersforrigorousthermodynamicmodels,basedeitheronequationsofstateoractiv-itycoefficients.Further,restrictionsandlimitationsdictatedbythediversityofphasebehavioursexhibitedbywater+hydrocarbonmixtures,datauncertainty(notedabove),andhydrocarbonchar-acterizationmustberecognizedattheoutsetandarediscussedbelow.Hydrocarboncompoundstypicallyapproachtheircriticaltem-peraturesremotefrom,andatlowertemperaturesthan,thecriticaltemperatureofwater.Forsuchcasesthehydrocarbon-richphaseisthemorevolatilephaseandthephasediagramsaretypicallyTypeIIIa[27]accordingtothenamingschemeofvanKonynenburg andScott[28].Therearealsocases,suchas1-methylnaphthalene, tetralin,naphthaleneandbiphenyl+waterwherethephasedia-gramsareTypeIIasreviewedby[29].However,forasmallbut  14  M.A.Satyroetal./FluidPhaseEquilibria  355 (2013) 12–25  Table1 Summaryofcomponentsandconditionsinthedatasetusedfordevelopmentofhydrocarboninwatersolubilitymodel( T  ,temperature;  x hc  ,hydrocarbonmolefraction).Componentsnotedwithanasteriskmay   havesolubilitydatareportedbelowtheirmeltingpoint.Component T  min  (K) T  max  (K)  x hc  ,min  x hc  ,max  #points1,3-Cyclopentadiene298.20308.401.410E − 044.620E − 0442-Methyl-1,3-butadiene293.20333.201.440E − 042.290E − 0461,4-Pentadiene298.15298.151.480E − 041.480E − 0411-Pentyne298.20298.202.780E − 044.150E − 042Cyclopentane273.20426.304.000E − 052.040E − 04102-Methyl-2-butene288.20 333.20 6.060E − 05 9.300E − 05 73-Methyl-1-butene298.20298.203.340E − 053.340E − 0511-Pentene298.20298.203.800E − 053.800E − 0512-Pentene298.20298.205.210E − 055.210E − 0512,2-Dimethylpropane298.20298.208.300E − 068.300E − 0612-methylbutane273.20313.201.170E − 051.810E − 057n-Pentane273.20 308.20 9.600E − 06 1.640E − 05 16Benzene(*) 273.20 527.20 3.350E − 04 1.540E − 02 1531,4-Cyclohexadiene278.30318.401.570E − 042.270E − 046Cyclohexene278.30318.404.670E − 056.810E − 05101,5-Hexadiene286.20298.203.700E − 053.700E − 0521-Hexyne298.20 298.207.890E − 057.890E − 051Cyclohexane(*)278.30482.201.100E − 054.930E − 04191-Hexene293.20494.309.200E − 067.300E − 0410Methylcyclopentane283.20298.208.950E − 069.600E − 0642-Methyl-1-pentene298.20298.201.700E − 051.700E − 0514-Methyl-1-pentene298.20 298.20 1.000E − 051.000E − 0512,2-Dimethylbutane273.20298.203.850E − 064.970E − 0642,3-Dimethylbutane273.20422.803.990E − 063.370E − 059Hexane273.20425.002.090E − 062.320E − 05232-Methylpentane273.20422.702.720E − 062.360E − 05123-Methylpentane298.20298.202.680E − 062.740E − 0631,3,5-Cycloheptatriene278.30318.401.136E − 041.495E − 0471,6-Heptadiyne298.20298.203.230E − 043.230E − 041Toluene273.20548.209.200E − 051.290E − 02113Cycloheptene298.20298.201.200E − 051.200E − 0511,6-Heptadiene298.20298.208.200E − 068.200E − 0611-Heptyne298.20298.201.760E − 051.760E − 0511-Methylcyclohexene298.20 298.20 9.700E − 069.700E − 061Cycloheptene298.20303.204.990E − 065.500E − 0621-Heptene293.20303.203.340E − 065.700E − 0652-Heptene296.70298.202.700E − 062.750E − 062Methylcyclohexane283.20410.502.700E − 062.550E − 0592,3-Dimethylpentane298.20298.209.430E − 079.430E − 0712,4-Dimethylpentane273.20298.206.500E − 071.170E − 0663,3-Dimethylpentane298.15 423.55 1.060E − 061.548E − 058n-Heptane273.20423.604.070E − 077.860E − 06173-Methylhexane273.20298.208.890E − 079.410E − 073Styrene279.20338.204.300E − 051.000E − 0412Ethylbenzene273.20506.702.480E − 051.930E − 0382o-Xylene273.20318.202.850E − 054.080E − 0511m-Xylene273.20543.802.400E − 055.000E − 0330p-Xylene(*)273.20555.702.650E − 057.624E − 03254-Vinyl-1-cyclohexene298.15298.158.300E − 068.300E − 0611,7-Octadiene293.15360.153.000E − 041.490E − 0231-Octyne298.15298.154.400E − 064.400E − 061Cyclooctane298.15298.151.270E − 061.270E − 061cis-1,2-Dimethylcyclohexane298.15298.159.600E − 079.600E − 0711,4-Dimethylcyclohexane330.15513.152.700E − 064.120E − 044trans-1,4-Dimethylcyclohexane298.15298.156.160E − 076.160E − 071Ethylcyclohexane310.90552.802.400E − 062.370E − 0351-Octene298.20477.604.000E − 079.100E − 054Propylcyclopentane298.15298.153.270E − 073.270E − 0711,1,3-Trimethylcyclopentane298.15298.155.990E − 075.990E − 071n-Octane273.20552.808.260E − 086.000E − 04162,2,4-Trimethylpentane273.20298.201.800E − 073.880E − 0752,3,4-Trimethylpentane273.20298.203.620E − 073.690E − 073Indan   298.15 298.151.350E − 051.665E − 0521-Ethyl-2-methylbenzene298.15298.151.122E − 051.122E − 051Isopropylbenzene273.20353.408.920E − 062.420E − 05191,8-Nonadiyne298.15298.151.900E − 051.900E − 051Propylbenzene273.20359.006.860E − 061.980E − 05291,2,3-Trimethylbenzene288.20318.208.970E − 061.280E − 0561,2,4-Trimethylbenzene288.20318.207.770E − 061.040E − 0571,2,5-Trimethylbenzene288.20373.205.910E − 062.910E − 05171-Nonyne298.15298.151.000E − 061.000E − 0611-Nonene298.15298.151.600E − 071.600E − 0711,1,3-Trimethylcyclohexane298.15298.152.530E − 072.530E − 0714-Methyloctane298.15298.151.600E − 081.600E − 081Nonane298.20298.201.710E − 081.710E − 082  M.A.Satyroetal./FluidPhaseEquilibria  355 (2013) 12–25 15 Table1( Continued )Component T  min  (K) T  max  (K)  x hc  ,min  x hc  ,max  #points2,2,5-Trimethylhexane273.20273.201.110E − 071.110E − 072Naphthalene(*)273.20348.201.696E − 063.629E − 05631,2,3,4-Tetrahydronaphthalene424.70573.209.000E − 039.000E − 032Butylbenzene280.20373.201.740E − 061.120E − 0525sec-Butylbenzene283.20298.202.360E − 062.360E − 062tert-Butylbenzene283.20298.203.950E − 064.600E − 063p-Cymene283.20473.004.300E − 052.000E − 0431,2-Diethylbenzene283.15293.159.600E − 069.600E − 0621,3-Diethylbenzene310.93 549.82 4.300E − 06 3.070E − 03 71,4-Diethylbenzene283.15293.153.330E − 063.330E − 062Isobutylbenzene298.15298.151.350E − 061.350E − 0611,2,4,5-Tetramethylbenzene(*)298.15298.154.670E − 074.670E − 071d-Limonene423.00423.002.100E − 052.100E − 051cis-Decalin374.15576.154.100E − 078.800E − 0551-Butylcyclohexane310.93 549.82 1.900E − 07 4.230E − 04 61-Decene288.20576.205.100E − 077.300E − 058Pentylcyclopentane298.15298.151.500E − 081.500E − 081Decane293.20298.202.500E − 092.500E − 0931-Methylnaphthalene273.20 589.40 2.520E − 06 7.800E − 02232-Methylnaphtalene(*)298.20298.203.120E − 063.220E − 062Pentylbenzene280.20318.203.860E − 075.750E − 0712tert-Pentylbenzene298.15298.151.270E − 061.270E − 0612-Methyldecalin298.15298.154.820E − 094.820E − 091Undecane298.20298.204.100E − 105.070E − 103Acenaphthylene(*)273.20348.201.690E − 074.970E − 0623Biphenyl(*) 273.20 337.70 3.081E − 075.358E − 06251,3-Dimethylnaphthalene298.15298.159.200E − 079.200E − 0711,4-Dimethylnaphthalene298.15298.151.310E − 061.310E − 0611,5-Dimethylnaphthalene(*)298.20298.203.158E − 073.770E − 0722,3-dimethylnaphthalene(*)298.20298.202.290E − 073.470E − 0722,6-Dimethylnaphthalene(*) 298.20 298.20 1.499E − 07 2.331E − 0721-Ethylnaphthalene281.80549.809.400E − 071.490E − 03222-Ethylnaphthalene298.15298.159.220E − 079.220E − 0711,4-Diisopropylbenzene310.93549.823.700E − 077.100E − 048Hexylbenzene278.20318.209.180E − 081.450E − 0733Dodecane298.20298.204.000E − 104.000E − 102Fluorene(*)273.20348.207.200E − 082.680E − 0628Diphenylmethane(*) 298.15298.151.510E − 071.510E − 0714-Phenyltoluene(*)278.05313.151.960E − 077.590E − 0731,4,5-Triphenylnaphthalene(*)298.15298.152.150E − 072.150E − 071Anthracene273.20348.201.280E − 091.240E − 0749Phenanthrene(*)273.20348.203.649E − 081.740E − 0649trans-Stilbene(*)298.15298.152.000E − 082.000E − 0814,4  -Dimethyl-1,1  -biphenyl(*)277.15313.156.870E − 094.390E − 083Tetradecane298.00 298.00 2.100E − 102.100E − 1012-Methylanthracene(*)279.40304.206.610E − 103.670E − 09109-Methylanthracene(*)298.15298.152.440E − 082.440E − 0811-Methylphenanthrene(*)279.75303.058.921E − 093.326E − 087Fluoranthene(*)281.00303.001.200E − 089.500E − 0714Pyrene(*)273.20348.204.382E − 092.060E − 07389,10-Dimethylanthracene(*)298.15298.154.900E − 094.900E − 091Hexadecane293.00298.007.000E − 115.000E − 105Benzo[a]fluorene(*)298.15298.153.750E − 093.750E − 091Benzo[b]fluorene(*)298.15298.159.560E − 109.560E − 101Benz[a]anthracene(*)280.10302.902.360E − 101.000E − 0915Chrysene(*)280.00302.005.600E − 111.700E − 109Naphthacene298.00300.003.700E − 117.900E − 112Triphenylene(*)298.00300.003.000E − 093.400E − 0941,2-Diphenylbenzene(*)298.15298.159.720E − 089.720E − 0811,3-Diphenylbenzene(*)298.15298.151.185E − 071.185E − 0711,4-Diphenylbenzene(*)298.15298.151.410E − 091.410E − 091Octadecane(*)298.15298.151.500E − 101.500E − 1011-Methylbenz[a]anthracene(*)300.15300.154.100E − 114.100E − 1119-Methylbenz[a]anthracene(*)300.15300.154.500E − 114.500E − 11110-Methylbenz[a]anthracene(*)300.15300.154.100E − 114.100E − 1115-Methylchrysene(*)300.15300.154.600E − 094.600E − 091Benzo[a]pyrene(*)298.00300.002.700E − 103.400E − 103Benzo[e]pyrene(*)281.75304.852.320E − 104.860E − 1012Perylene(*)298.15298.152.830E − 112.830E − 111Cholanthrene(*)300.15300.152.500E − 102.500E − 1017,12-Dimethylbenz[a]anthracene(*)298.15298.154.260E − 094.260E − 0919,10-Dimethylbenz[a]anthracene(*) 300.15 300.153.000E − 093.000E − 09110-Ethylbenz[a]anthracene(*)300.15300.153.200E − 093.200E − 091Eicosane(*)298.15298.151.100E − 101.100E − 1015-Methylbenzo[a]pyrene(*)300.15300.156.000E − 116.000E − 111Methylcholanthrene(*)298.00300.001.000E − 101.900E − 102Benzo[ghi]perylene(*)298.15298.151.730E − 111.730E − 111
Search
Similar documents
View more...
Tags
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks