Above- and belowground biomass measurements in an unthinned stand of Sitka spruce (Picea sitchensis (Bong) Carr.)

Above- and belowground biomass measurements in an unthinned stand of Sitka spruce (Picea sitchensis (Bong) Carr.)
of 10
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
   M … aX  b 1wher e M i sbiomas s, X i san easilymeasured t r eechar - act er i stic and a and b ar e p ar ameter  s (Z ianis and   Mencuccini 2004 ).S uchr elat ionshi p  shavebeen devel- o p ed f or a var iet  y o f t r ee s p ecie s t oim p r ove t he under  st andingo ft r eebiomas sdi st r ibut ion and t ogen- er at ee st imationso fbiomassst ock(G r ieretal. 1981 ;  Bar t elink  1996 ; Fuwap eetal. 2001 ;W illiam setal. 2003 ; Z ianisand Mencuccini 2004 ).  ABEF r elat e sst emwood ormer chant ablet imber  volumet obiomas sst ock  s( Br own et al. 1989 , 1999 ;  Br own 2002 ;C hhabr a etal. 2002 ; Leht onen etal. 2004 ) and i su sed t oconver tmer chant ablevolumet ost and  biomass( B  st and   in tha  1 ),accor dingt oEq.2(S nowdon etal. 200 2 )  B  st and   … V D BEF 2wher e V i st hemer chant ablest emvolume(i.e.t o7cm diamet er )o ft hest and (m  3 ha  1 ),BEF i st hebiomas s e x p ansion f act or ,and D i swood densit  y(tm  3 ).T het  y  p eo fdat a r ecor ded in t heN  FIi sa signi- cant f act orin ap  p r oachselect ion. I  ff or e st invent or  y  dat a r e p or t  sindividual t r eediamet er  sorst ockingby  diamet erclas se s, t hen allomet r icr elat ionshi p  scan be u sed; alt er nat ively , i f mer chant able volume t o a k nown minimumdiamet er(i.e.7cm)i sr e p or t ed,t hen an ap  p r o p r iat eBEF i su sed ( Br own 200 2 ). I r eland i s cur r ent lyin t hep r oce s so fim p lement inga newN  FI  based on p er manent p lot  st hat will p r ovidedat a t o alloweit her ap  p r oach t o be ado p t ed f or Cst ock  r e p or ting.  Forbelowgr ound biomass,r oot : shoot( R)r at io sar e commonlyap  p lied in t hedevelo p mento ft ot al t r eeC   st ock. R r at iosar ean indicat oro fr elat ivebelowgr ound  biomasst oabovegr ound biomass.Bot hbiot icand abi- ot icf act or  sar et hought t oinuenceit (C air nset al. 1997 ). T hep r imar  yobject iveo ft hi sst udywast ocont r ibut e nat ionallys p ecicdat a,t hr ought hede st r uct iveanaly  si s o fbot habove-and belowgr ound biomas sp oolsf ort he majort r ees p ecie sin I r eland t oaid in t heim p r ovement  o f I r elands G  H Ginventor  y r e p or ting. Additionally , com p ar i sons bet ween e xi st ingnat ional Cst ocke st i- mat e s, develo p ed u singa de f ault BEF ap  p r oach, and  t ho segener at ed f r omp ubli shed biomas sf unct ions,ar e madewit ha f ocu son ident i f  yingvar iable st hat sub-  st antiallycont r ibut et ouncer t aint  yin t he seCst ock  e st imat e s.  Met hods S it ede scr i p t ion T hest udywaslocat ed in an indu st r ial cut awayp eat - land,whichwasa or est ed wit hS it k a s p r ucein 1983. T hesit ewasp r eviouslyu sed f ort hee xt r act ion o fp eat   f orf uel and waslocat ed at Lullymor e, C o. K ildar e ( Longit udeW 656 ¢,Lat it ude5317 ¢).T heaver ager e- cor ded mean annual t em p er at ur eand annual r ainfall in t he r egion i s 8.8 Cand 934mm, r e sp ect ively  (obser vat ions based on a 30- y ear aver age at t he  Mullingar meteor ological st at ion, 46k mf r omt he  st udy sit e). T he sit e, 20ha in e xt ent , consi st ed o f  r e sidual P hr agmit e s f en p eat , var  y ingin de p t hf r om 0. 25t o0.9m, and over ly ingsub p eat miner al soil consi st ingo fa calcar eous mar l lay er . W it hnosit e  p r e p ar at ion p r ior t o p lant ing, p ar allel dr ains, 1.3ð 1.5mwideand 15map ar t ,char act er i stico findu st r ial cut away p eat lands, wer ep r esent bet ween whicht he commer cial cr o po f S it k a s p r uce was p lant ed at a  s p acingo f2.3m. 180  V   conical  …  p l1 2    d   2t o p    d  t o p    d  bot t om   d   2bot t om   3wher  e Visthev   olumeincu bi cmetr  es  , listhelengthin metr  es  , d top   isthediameterofthetopinmetr  es  , d  bottom  is  thediameterofthebottominmetr  esand  p is 3.14.The measured volume was compared with that usingthe Huber formula, Eq. 4and tari tables (Hamilton19. Tari tables are tables from which the volume ofa single tree can be read if the DBH and height areknown. V …  p d   2m 40  ;000   L 4wher e V i st hevolumein cubicmet r es, L i st helengt hin met r e s, d  m  i s mid-diamet er in cent imet r es and   p is3.1415. Belowground biomassThe sampling of belowground biomass was undertakenwithin a 2m ·2m square marked from the centre of thestump from which all roots over 2mm were removed.Fine roots were not sampled. The roots were separatedinto three size classes based on diameter, namelcoarse(mm), medium (10mm)and small (10mm). The depth of the coarse root fraction determined thedepth to which the roots were excavated and variedbetween trees from 0.5to 1.2m. The FW of the collectedroots was determined in the “eld and “ve samples fromeach size class were randomlselected.All samples, both above- and belowground, were re-moved to the laboratorwhere the FW was immediatelrecorded on an electronic balance. The bark was re-moved from the stem samples and treated separatel.Live branch, dead wood and bark samples were oven-dried at 7 C to constant weight. After dring, the fo-liage and branches were treated separatel.The stemwood samples were dried at 4 C for 5das,to avoid the disintegration caused brapid shrinkage,and then at 10 C to constant weight. The oven DW wasrecorded using an electronic balance. All the sample DWwere considered to determine the DW:FW ratio for eachcomponent, which was then applied to the whole treeFW measured in the “eld to obtain the estimate of thewhole tree biomass (Snowdon et al. 2). The component samples were then pooled btree andground using a hammer mill (screen Cul-atti model DFH. Glen Creston Ltd., UKfor Cdetermination using a total C analser (Analitik Jenamicro N/C Analser.Carbon stock estimatesBiomass functions between the biomass components andDBH or height were developed using regression anal-ses, with best-t models being selected on the basis of theadjusted coe cient of determination (R   ). The selectedbiomass function was then solved for all surveyed treesto provide a weighted estimate of the plot biomass(Wang et al. 2), which was then upscaled to estimate the biomass stock per hectare.Comparisons were made with the estimate obtainedfrom applying Eq. 2, using Ireland•s national default values (Table2)for BEF, wood densityand C concen-tration and methods for determining stand volume.Additionall, the biomass functions published in theliterature (Ter-Mikaelian and Korukhin19)werecompared with those developed in this study. Table 2Default and literature values for coniferous speciesIrish nationaldefaults values a Europeanaverage a Great Britainvalues b Improved Irishdefault values c Biomass expansion factor density(t m  3 ) Carbon concentration [C0. a Adapted from Lowe et al. () b Adapted from Levyet al. (2) c Adapted from Gallagher et al. ()Table 3Regression equations for predicting root biomass densityEquation Intercept a b c dA a  1.00.9………B b……C c  1.00.8…0.20.18 Adapted from Cairns et al. (19). All equations are of the form=expintercept + aln A+ bln B+ c(C)+ dD)where B is age in years, C is 1 in temperate and 0in boreal and D is 0in tropical a Estimates RBD based on ABD onl b As A, but adds age c As A, but adds latitudinal zone18  % uncertainty 12 4 rl 1 ¼2rl 1 ð5ÞUncertaintyestimates of C stock where developed fromthe combined variable errors using Eq. 6 U  t ot al  …   ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi U   21   U   2 2   U   2n q    6wher  e U total isthe%un cer  taintyinthes  umofthe v   ar  ia bles(halfthe95%conden ceinter  v   aldiv   idedby thetotalandexp   r  es  sedasap   er   centage)and U i isthe %ofun cer  taintiesas  s  o ciatedwithea chofthev   ar  i- a bles  . R             es  ults   Des   cr  ip   tiv   es  tatis  ti csandANOVAtes  tswer  econdu cted us  ingtheSPSSVer  s  ion11(SPSS 2001 ). ComponentDW:FWr  atiosandbiomassdistr  i bution Allthes  ampleswer  eanalys  edus  ingthecomp   onentto deter  mineaDW:FWr  atio(Table 4),whi chwasap   p   lied tothetotalFWofea chcomp   onent,asdeter  minedinthe eldtodeter  minethecomp   onentDWforea chs  amp   le tr  ee(Ta ble 5). Stemwooda c countedforthemajor  ityofthea bov   e- gr  oundbiomas  s  ,withDWr  ep   r  es  enting,onav   er  age, 43%ofthetotal.Br  an chwood,foliage,bar  kanddead- wooda c countedforafur  ther16,10,7and6%, r  es  p   e ctiv   ely.Ther  emaining18%wasattr  i butedto  belowgr  oundbiomas  s(i.e.s  mall,mediumandlar  ge r  oots  ). Biomas  sfun ctions   Biomas  sfun ctionsofthep   owerfor  mwer  ecomp   ar  edon thebas  isofbes  tt( R              2 )betweena bov   egr  oundtr  ee  comp   onentbiomas  sandtheindep   endentv   ar  ia blesDBH              andheight(Table 6).Thebes  tt( R              2 =0.96)wasfound  betweentotala bov   egr  oundliv   ebiomass(i.e.deadwood ex cluded)andDBH             .Ther  elations  hipbetweens  tem- woodandDBHhadanequiv   alent R              2 .Ther  elations  hip   s    betweenbiomas  sandheightwer  eals  ofoundtobe s  tr  ong. Ta ble4 DW:FWr  atiosandbiomas  sdis  tr  i butionbetweencom- p   onents   Comp   onent N Mean %Un cer  tainty Deadwood 50 0.55 3.6 Stemwood 60 0.35 2.2 Br  an chwood 120 0.43 3.4 Foliage 120 0.43 3.0 Bar  k 60 0.43 4.8 Smallr  oots 50 0.43 2.6 Mediumr  oots 50 0.42 2.7 Lar  ger  oots 50 0.40 2.8 Ta ble5 Comp   onentdr  yweightofea chhar  v   es  tedtr  ee DBH             ( cm) Deadwood (kgd.m.) Stemwood (kgd.m.) Br  an ches   (kgd.m.) Foliage (kgd.m.) Bar  k (kgd.m.) Smallr  oots   (kgd.m.) Mediumr  oots   (kgd.m.) Lar  ger  oots   (kgd.m.) Total (kgd.m.) 12 2.00 26.14 12.79 7.58 4.27 1.76 2.77 6.56 63.87 13 5.02 30.35 10.17 5.32 4.04 1.33 3.53 7.86 67.60 15 1.51 33.00 9.97 7.35 4.90 4.89 3.54 8.76 73.90 18 12.65 52.46 18.26 13.04 10.54 3.14 5.29 16.40 131.78 21 12.27 88.36 32.38 28.05 13.25 4.06 4.80 28.80 211.99 22 14.69 92.74 36.23 22.76 14.20 2.49 9.20 22.16 214.46 23 5.78 97.03 27.56 23.94 14.02 6.67 13.48 26.69 215.16 26 11.22 96.41 42.73 31.75 12.27 2.84 8.02 25.20 230.44 27 28.60 128.46 51.73 28.31 18.72 1.98 5.21 48.24 311.24 29 18.98 118.80 44.92 38.91 17.52 6.73 11.55 36.97 294.37 183
Similar documents
View more...
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks