Slides

Análise bayesiana de decisões aspectos práticos

Description
1. An´alise Bayesiana de Decis˜oes Aspectos Pr´aticos Helio S. Migon1 e Hedibert F. Lopes Universidade Federal do Rio de Janeiro (UFRJ) 1 Endere¸co para…
Categories
Published
of 200
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  • 1. An´alise Bayesiana de Decis˜oes Aspectos Pr´aticos Helio S. Migon1 e Hedibert F. Lopes Universidade Federal do Rio de Janeiro (UFRJ) 1 Endere¸co para correspondˆencia: Universidade Federal do Rio de Janeiro (UFRJ), Caixa Postal 68530, CEP 21945-970, Rio de Janeiro RJ - Brazil, Fax: 55-21-2290 1095, telefone: 55-21-2562-8290, emails: migon@im.ufrj.br e hedibert@im.ufrj.br
  • 2. Pref´acio Esta monografia tem origem em notas de aulas ministradas em cursos do bacharelado de Estat´ıstica e do mestrado de Pesquisa Operacional da UFRJ. A motiva¸c˜ao para preparar este texto vem de duas fontes alterna- tivas. A primeira, e mais ´obvia, ´e a inexistˆencia de textos cobrindo esta sorte de conte´udo num n´ıvel adequado. Al´em disso, as tentativas de se escrever sobre esse t´opico, c´a no Brasil, foram sempre muito limitadas, n˜ao passando, em geral, da descri¸c˜ao dos elementos b´asicos da teoria de decis˜ao. A segunda, talvez de maior desafio, decorre da inexistˆencia dessa disciplina nas nossas gradua¸c˜oes de estat´ıstica. Pretendemos que esta monografia colabore para reverter esta posi¸c˜ao paradoxal. Nossa proposta neste texto ´e combinar aspectos te´oricos e pr´aticos. O termo an´alise de decis˜oes ´e um reconhecimento de que a disciplina de tomada de decis˜oes vai al´em da descri¸c˜ao dos formalismos matem´aticos, como por exemplo, a axiomatiza¸c˜ao da teoria de utilidade e os tecnicis- mos da inferˆencia estat´ıstica. Alguns aspectos que merecem destaque s˜ao a abordagem de modelos gr´aficos: diagramas de influˆencia e ´arvores de decis˜ao e a introdu¸c˜ao `a programa¸c˜ao dinˆamica estoc´astica. A discuss˜ao de m´etodos de maximiza¸c˜ao da utilidade esperada atrav´es de t´ecnicas de Monte Carlo ´e outro aspecto de extrema importˆancia pr´atica. Os m´eritos deste trabalho, esperamos, est˜ao na forma como o material coletado de diversas fontes de extremo valor aplicado e te´orico est´a organizado. Den- tre os textos cl´assicos que influiram na organiza¸c˜ao desta monografia, i
  • 3. ii destacamos DeGroot (1970), Lindley (1971), Bunn (1984) e, mais recen- temente, Clemen (1996) e French and Rios-Insua (2000). Como j´a mencionamos, o n´ıvel do livro ´e adequado para alunos de gradua¸c˜ao em Estat´ıstica, Atu´aria e Pesquisa Operacional, que tenham um m´ınimo de conhecimentos de Inferˆencia Estat´ıstica. Ser´a ´util, tamb´em, para alunos de Administra¸c˜ao e Economia, em n´ıvel de p´os-gradua¸c˜ao. Embora pretendamos que este seja um livro texto em an´alise de decis˜oes, nessa vers˜ao n˜ao inclu´ımos exerc´ıcios selecionados ao final dos cap´ıtulos. O material como um todo pode ser aplicado em cursos de um per´ıodo leti- vo, cerca de 45 horas. Os cap´ıtulos 1, 2, 3 e 5 s˜ao essenciais para principi- antes, pois introduzem no¸c˜oes elementares de teoria da decis˜ao, bem como mecanismos de solu¸c˜ao e avalia¸c˜ao de problemas de decis˜ao (´arvores de de- cis˜oes, diagramas de influˆencia, an´alise de sensibilidade). Os cap´ıtulos 4, 6 e 7 introduzem metodologia mais avan¸cada. No cap´ıtulo 4 introduzem- se, resumidamente, os fundamentos que tornam cientificamente coerente a teoria da decis˜ao vista nos outros cap´ı tulos. Os cap´ıtulos 6 e 7 tratam, respectivamente, de problemas de decis˜oes sequenciais e da aplica¸c˜ao de m´etodos Monte Carlo para a solu¸c˜ao do problema da maximiza¸c˜ao da utilidade esperada. Portanto, acreditamos que essa monografia possa ser flexivelmente utilizada para cursos introdut´orios (gradua¸c˜ao) bem como para cursos intermedi´arios (mestrado). V´arias pessoas colaboraram, de uma forma ou de outra e em v´arios est´agios, para tornar vi´avel a elabora¸c˜ao desse trabalho. Alguns exem- plos mencionados neste texto tiveram origem em temas de inicia¸c˜oes cient´ıficas e disserta¸c˜oes de mestrado que supervisionamos nos ´ultimos anos no IM e na COPPE/UFRJ. Destacamos a colabora¸c˜ao de Alcione Miranda (doutoranda de Pesquisa Operacional) em aplica¸c˜oes do pacote DPL, al´em da elabora¸c˜ao de v´arios gr´aficos, juntamente com Andr´e Luiz Silva e Lilian Migon. Agradecemos a Giovanni Parmigiani e Lurdes In- oue que, juntamente com o segundo autor (HFL), gentilmente cederam alguns cap´ıtulos de seu livro Statistical Decision Theory, com publica¸c˜ao
  • 4. iii prevista para 2003. Finalmente agradecemos a Associa¸c˜ao Brasileira de Estat´ıstica (ABE) - pela oportunidade de apresentar este conte´udo no XV Simp´osio Nacional de Probabilidade e Estat´ıstica (SINAPE). Certamente muitas omiss˜oes e v´arios erros ser˜ao detectados pelos eventuais leitores, aos quais pedimos, desde j´a, desculpas. Todas as cr´ıticas e coment´arios ser˜ao seriamente con- sideradas e contribuir˜ao para tornar mais completa uma pr´oxima edi¸c˜ao revisada e ampliada deste material. Rio de Janeiro, 25 de mar¸co de 2002. HSM e HFL
  • 5. iv
  • 6. Sum´ario 1 Introdu¸c˜ao 3 1.1 Uma breve nota hist´orica . . . . . . . . . . . . . . . . . . . 3 1.2 Sobrevoando o livro . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Nota¸c˜ao b´asica . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Organiza¸c˜ao do Livro . . . . . . . . . . . . . . . . . . . . . 17 2 Conceitos B´asicos 23 2.1 Elementos da an´alise de decis˜oes . . . . . . . . . . . . . . . 24 2.2 Especificando a fun¸c˜ao de perda . . . . . . . . . . . . . . . 29 2.3 Fun¸c˜ao de perda n˜ao negativa . . . . . . . . . . . . . . . . 34 2.4 Concavidade do risco de Bayes . . . . . . . . . . . . . . . . 36 2.5 Problema de decis˜ao com Θ e A finitos . . . . . . . . . . . 38 2.6 Revisitando a regra minimax . . . . . . . . . . . . . . . . . 43 2.7 Problema de decis˜ao usando dados . . . . . . . . . . . . . 46 2.8 An´alise de risco . . . . . . . . . . . . . . . . . . . . . . . . 50 2.9 Dominˆancia estoc´astica . . . . . . . . . . . . . . . . . . . . 55 3 Modelos Gr´aficos 61 3.1 Introdu¸c˜ao . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 Redes Bayesianas . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 Diagrama de influˆencia e ´arvore de decis˜ao . . . . . . . . . 68 v
  • 7. vi SUM ´ARIO 3.4 Introdu¸c˜ao ao DPL . . . . . . . . . . . . . . . . . . . . . . 78 4 Probabilidade subjetiva e utilidade 89 4.1 ”Dutch book” e regras escore . . . . . . . . . . . . . . . . 92 4.2 Utilidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.1 Paradoxo de Saint Petersburg . . . . . . . . . . . . 98 4.2.2 Teorema de von Neumann–Morgernstern . . . . . . 98 4.3 M´ultiplos atributos . . . . . . . . . . . . . . . . . . . . . . 103 4.4 Medidas de avers˜ao ao risco . . . . . . . . . . . . . . . . . 105 5 An´alise de Sensibilidade 109 5.1 Introdu¸c˜ao . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Identifica¸c˜ao e estrutura . . . . . . . . . . . . . . . . . . . 110 5.3 Exemplo de an´alise preliminar de sensibilidade . . . . . . . 113 5.4 Conceitos b´asicos de an´alise de sensibilidade . . . . . . . . 118 5.5 Sensibilidade da distribui¸c˜ao a priori . . . . . . . . . . . . 122 5.6 Sensibilidade conjunta: priori e utilidade . . . . . . . . . . 126 6 Programa¸c˜ao Dinˆamica 135 6.1 Introdu¸c˜ao . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.2 Uma classe de problemas de otimiza¸c˜ao . . . . . . . . . . . 136 6.3 Programa¸c˜ao dinˆamica . . . . . . . . . . . . . . . . . . . . 138 6.3.1 Exemplos . . . . . . . . . . . . . . . . . . . . . . . 144 6.4 ´Arvore de decis˜ao e programa¸c˜ao dinˆamica . . . . . . . . . 149 6.5 Op¸c˜oes reais: uma introdu¸c˜ao . . . . . . . . . . . . . . . . 152 7 MUE via m´etodos Monte Carlo 163 7.1 Aproximando U(d) via Monte Carlo . . . . . . . . . . . . . 164 7.2 Ajuste da curva de utilidade . . . . . . . . . . . . . . . . . 166 7.3 Simulando o modelo aumentado . . . . . . . . . . . . . . . 167 7.3.1 Tˆempera simulada em problemas de decis˜ao . . . . 168 7.4 Exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
  • 8. SUM ´ARIO vii 7.4.1 Tamanho amostral da Normal . . . . . . . . . . . . 171 7.4.2 Tamanho amostral da Binomial . . . . . . . . . . . 173 7.4.3 Defibrila¸c˜ao do cora¸c˜ao . . . . . . . . . . . . . . . . 175
  • 9. viii SUM ´ARIO
  • 10. Lista de Figuras 1.1 Diagrama de influˆencia . . . . . . . . . . . . . . . . . . . . 7 1.2 ´Arvore de decis˜ao inicial . . . . . . . . . . . . . . . . . . . 8 1.3 Solu¸c˜ao via ´arvore de decis˜ao . . . . . . . . . . . . . . . . 8 1.4 Valor monet´ario esperado. a1 - linha cheia; a2 - linha pon- tilhada; a3 - linha tracejada. . . . . . . . . . . . . . . . . . 9 1.5 Decis˜oes sequenciais: diagrama de influˆencia . . . . . . . . 11 1.6 Decis˜oes sequenciais: ´arvore de decis˜ao . . . . . . . . . . . 20 1.7 Decis˜oes sequenciais: solu¸c˜ao . . . . . . . . . . . . . . . . . 21 1.8 Diagrama de influˆencia para informa¸c˜ao imperfeita . . . . 21 2.1 Fun¸c˜oes de perda alternativas em problemas de estima¸c˜ao: perda zero-um (linha cheia), perda quadr´atica (linha pon- tilhada) e perda absoluta (linha tracejada). . . . . . . . . . 31 2.2 Concavidade do risco de Bayes: n(A) < ∞ (figura da es- querda); n(A) = ∞ (figura da direita). . . . . . . . . . . . 38 2.3 Efeito da imprecis˜ao sobre π: incremento no risco de Bayes 39 2.4 Representa¸c˜ao gr´afica de G . . . . . . . . . . . . . . . . . . 40 2.5 Poliedro convexo; caso k = 2 e m = 6 . . . . . . . . . . . 43 2.6 Regra minimax - determina¸c˜ao gr´afica . . . . . . . . . . . 45 2.7 Regra minimax - determina¸c˜ao gr´afica . . . . . . . . . . . 46 2.8 Admissibilidade da regra de Bayes . . . . . . . . . . . . . . 47 2.9 Risco de Bayes - exemplo com dados . . . . . . . . . . . . 51 ix
  • 11. x LISTA DE FIGURAS 2.10 F domina G estocasticamente em primeira ordem. . . . . . 57 2.11 G ´e um espalhamento de F com preserva¸c˜ao da m´edia. . . 58 3.1 Rede Bayesiana: cada n´o refere-se a uma vari´avel aleat´oria dicotˆomica . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2 Rede Bayesiana para o modelo fatorial. . . . . . . . . . . . 66 3.3 Modelo fatorial est´atico no WinBugs. . . . . . . . . . . . . 67 3.4 DI para risco b´asico: decis˜ao prim´aria (a), evento incerto (θ) e consequˆencias (c) . . . . . . . . . . . . . . . . . . . . 71 3.5 DI para pol´ıtica de risco b´asico . . . . . . . . . . . . . . . 71 3.6 AD para investimento em ativo de risco: a decis˜ao prim´aria seria investir ou n˜ao, o evento incerto caracterizaria o suces- so ou fracasso do investimento e a consequˆencia seria o montante auferido. . . . . . . . . . . . . . . . . . . . . . . 72 3.7 DI e AD para informa¸c˜ao imperfeita. . . . . . . . . . . . . 74 3.8 DI para c´alculos intermedi´arios; uma situa¸c˜ao de objetivos m´ultiplos sem decis˜ao de risco. . . . . . . . . . . . . . . . . 74 3.9 DI agregado sobre o uso de qu´ımico. uso: n´ıvel de uti- liza¸c˜ao do produto qu´ımico, risco: risco de cˆancer, valor: valor econˆomico, ψ: potencial cancer´ıgeno e λ: taxa de exposi¸c˜ao ao produto qu´ımico. . . . . . . . . . . . . . . . . 75 3.10 DI para c´alculo do risco de cˆancer . . . . . . . . . . . . . . 76 3.11 Diagrama de influˆencia para decis˜oes sequenciais . . . . . . 77 3.12 Diagrama de influˆencia . . . . . . . . . . . . . . . . . . . . 81 3.13 Resultado final . . . . . . . . . . . . . . . . . . . . . . . . 82 3.14 Rainbow diagram . . . . . . . . . . . . . . . . . . . . . . . 83 3.15 Valor da informa¸c˜ao perfeita . . . . . . . . . . . . . . . . . 84 3.16 Diagrama de influˆencia - informa¸c˜ao imperfeita . . . . . . 85 3.17 Diagrama de influˆencia - informa¸c˜ao imperfeita . . . . . . 88 4.1 Fun¸c˜ao de utilidade de um agente averso ao risco. . . . . . 106
  • 12. LISTA DE FIGURAS xi 5.1 Diagrama de influˆencia: receita e custo . . . . . . . . . . . 116 5.2 Diagrama de influˆencia completo . . . . . . . . . . . . . . 117 5.3 Diagrama tornado . . . . . . . . . . . . . . . . . . . . . . . 119 5.4 Valor esperado da distribui¸c˜ao preditiva, segundo duas pri- oris alternativas, e frequˆencias observadas no per´ıodo t = 9 · · · 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.5 Gr´afico de π versus µ com regi˜ao de sensibilidade de π . . 130 5.6 Efeito de σ2 na regi˜ao de indiferen¸ca. . . . . . . . . . . . . 132 5.7 Efeito de a - coeficiente de avers˜ao ao risco na curva de indiferen¸ca. . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1 A linha cheia representa o caminho mais curto ligando a a c e a linha pontilhada um caminho alternativo de b a c, tal que o trajeto total seja mais longo. . . . . . . . . . . . . . 137 6.2 O grafo acima tem v´ertices rotulados de 1 a 10 e arcos com as distˆancias anotadas (di,j ) . . . . . . . . . . . . . . . . . 139 6.3 Compara¸c˜ao de trˆes fun¸c˜oes de utilidades alternativas: u(a) = a1/2 , u(a) = 1 − exp(−a), a > 0 ou u(a) = 1 − 1/(1 + a). . 146 6.4 ´Arvore de decis˜ao com um n´umero finito de est´agios. . . . 151 7.1 (a) Utilidade esperada, (b) Utilidade esperada obtida por Integra¸c˜ao Monte Carlo (M=10.000), (c) 10.000 pares (ni, ui) e (d) Curva ajustada (loess no S-plus). Valores fixados: (σ, µ, τ, c) = (1.0, 0.0, 1.0, 0.01). . . . . . . . . . . . . . . . 172 7.2 (a) Utilidade esperada, (b) Utilidade esperada obtida por Integra¸c˜ao Monte Carlo (M=10.000), (c) 10.000 pares (ni, ui) e (d) Curva ajustada (loess no S-plus). Valores fixados: (σ, µ, τ, c) = (3.0, 0.0, 3.0, 0.01). . . . . . . . . . . . . . . . 173 7.3 UJ (n) para J = 20 e M = 10.000 simula¸c˜oes. . . . . . . . . 174 7.4 As linhas fina e grossa representam, respectivamente, os valores aproximado e verdadeiro de U(n) (M¨uller and Parmi- giani, 1995). . . . . . . . . . . . . . . . . . . . . . . . . . . 176
  • 13. xii LISTA DE FIGURAS 7.5 U(D) para c = 0.02. O planejamento ´otimo foi d0 = 9.25 e a = 0.30, que est˜ao marcados com um triˆangulo no gr´afico (Clyde, M¨uller and Parmigiani, 1993). . . . . . . . . . . . 179
  • 14. Lista de Tabelas 1.1 Consequˆencias (custos) em unidades monet´arias (u.m.) . . 6 1.2 Vari´aveis de entrada - dom´ınio de varia¸c˜ao . . . . . . . . . 12 1.3 Verossimilhan¸ca - p(x|θ) . . . . . . . . . . . . . . . . . . . 15 1.4 Distribui¸c˜oes `a posteriori, π(θ|x), e preditiva, p(x). . . . . 15 2.1 Perda associada a cada a¸c˜ao e cada estado da natureza. . . 26 2.2 Fun¸c˜ao de ganho da livraria (em dezenas) . . . . . . . . . 28 2.3 Perdas monet´arias (em milhares) . . . . . . . . . . . . . . 35 2.4 Fun¸c˜ao de perda n˜ao negativa (L0(θ, a) = L(θ, a) − λ0(θ)) . 35 2.5 Fun¸c˜ao de perda . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Fun¸c˜ao de perda n˜ao negativa . . . . . . . . . . . . . . . . 36 2.7 Fun¸c˜ao de perda n˜ao negativa . . . . . . . . . . . . . . . . 41 2.8 Fun¸c˜ao de perda . . . . . . . . . . . . . . . . . . . . . . . 44 2.9 Fun¸c˜ao de perda n˜ao negativa . . . . . . . . . . . . . . . . 44 2.10 Fun¸c˜ao de perda. . . . . . . . . . . . . . . . . . . . . . . . 49 2.11 Fun¸c˜ao de probabilidade, p(x|θ). . . . . . . . . . . . . . . . 49 2.12 Distribui¸c˜ao conjunta de θ e x. . . . . . . . . . . . . . . . 50 2.13 Retornos mensais de dois ativos de risco . . . . . . . . . . 54 2.14 Retornos e riscos dos ativos a1 e a2 . . . . . . . . . . . . . 54 2.15 Matriz de ganhos . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 Probabilidades conjuntas sobre X × Θ . . . . . . . . . . . 86 xiii
  • 15. LISTA DE TABELAS 1 3.2 Consequˆencias – lucro l´ıquido em A × Θ . . . . . . . . . . 87 5.1 Vari´aveis de entrada - dom´ınio de varia¸c˜ao . . . . . . . . . 118 5.2 Dados de n´umero de consultas m´edicas . . . . . . . . . . . 121 5.3 Novos valores associados as vari´aveis mais relevantes . . . 125 5.4 Problema de decis˜ao sem dados. . . . . . . . . . . . . . . . 126 5.5 Alternativas considerando as varia¸c˜oes extremas de π. . . . 127 5.6 Perdas no mercado de comodities. . . . . . . . . . . . . . . 128 5.7 Valor equivalente certo. . . . . . . . . . . . . . . . . . . . . 131 6.1 Pol´ıtica ´otima (em negrito) . . . . . . . . . . . . . . . . . . 141 6.2 Compara¸c˜ao dos ganhos sequenciais com os do Profeta . . 150
  • 16. 2 LISTA DE TABELAS
  • 17. Cap´ıtulo 1 Introdu¸c˜ao 1.1 Uma breve nota hist´orica Teoria de Decis˜ao ´e uma ´area que vem se desenvolvendo aceleradamente desde o meado do s´eculo passado. Uma s´olida base axiom´atica foi intro- duzida por von Neumann and Morgenstern (1944). Os trabalhos de Wald (1949) e Savage (1954) s˜ao absolutamente centrais nos desenvolvimentos estat´ısticos da teoria da decis˜ao, embora esta ´area envolva muitos outros aspectos, sendo claramente de natureza interdisciplinar. O termo teoria da decis˜ao ´e utilizado de forma muito gen´erica e in- terdisciplinar, decorrendo, poss´ıvelmente, da natureza ampla do processo de decis˜ao. Dentre as ´areas do conhecimento que consideram aspectos da tomada de decis˜ao destacam-se: inteligˆencia artificial, economia, busi- ness, matem´atica, pesquisa operacional e estat´ıstica, ´e claro. Desta forma a Teoria da Decis˜ao ´e uma disciplina de estat´ıstica envolvendo e explo- rando a estrutura do processo de tomada de decis˜ao. Existe um grande n´umero de excelentes livros de an´alise, teoria e suporte `a decis˜ao. Embora a escolha de alternativas com base no valor esperado da utilidade tenha v´arios s´eculos (vale mencionar a contribui¸c˜ao 3
  • 18. 4 CAP´ITULO 1. INTRODUC¸ ˜AO de Bernoulli, 1738, no famoso paradoxo de St. Petersburg), nos limitare- mos a listar e comentar parte da literatura p´os-guerra. Os desenvolvi- mentos em teoria dos jogos est˜ao descritos pelo menos em trˆes livros fundamentais: von Neumann and Morgenstern (1944), Wald (1949) e Savage (1954). von Neumann and Morgenstern (1944) introduzem as propriedades minimax, o teorema minimax e a extens˜ao dessas id´eias a v´arias classes de jogos. Por sua vez, Savage (1954) estende a axiom- atiza¸c˜ao de von Neumann and Morgenstern para cobrir probabilidades subjetivas e utilidades. Savage pode ser mencionado como um dos princi- pais mentores da inferˆencia Bayesiana. Luce and Raiffa (1957) resumem muito da teoria dos jogos e alguns resultados experimentais. Nos anos 60 destacamos os livros de Raiffa and Schlaifer (1961) onde se encontra pela primeira vez a tecnologia simples de se tomar decis˜oes concatenadamente. Os resultados de programa¸c˜ao dinˆamica obtidos por Bellman (1957) s˜ao relacionados com os procedimentos de maximiza¸c˜ao da utilidade esperada num artigo hist´orico de Lindley (1961). Surgem, ainda, nesta d´ecada v´arios textos de teoria estat´ıstica da decis˜ao. Cita- mos como exemplos marcantes os livros de Ferguson (1967) e o DeGroot (1970). No que concerne a an´alise de decis˜oes, isto ´e: aspectos mais apli- cados da tomada de decis˜oes sob incerteza, podemos mencionar os livros de Raiffa (1996), Lindley (1971) e Lindgren (1971). Uma retomada na publica¸c˜ao de textos nesta ´area ´e observada nas ´ultimas duas d´ecadas. Uma das caracter´ısticas dessas novas publica¸c˜oes ´e incorporar, mais e mais, aspectos pr´aticos incluindo o uso de softwares espec´ıficos (DPL 4.0 (1998) e BUGS Spiegelhalter, Thomas, Best, and Gilks (1996)). Novidades em termos de diagramas de influˆencia s˜ao en- contradas em Smith (1988) e discuss˜oes sobre decis˜oes em grupos ampla- mente discutidos em French (1989). Um cl´assico desta d´ecada, com forte ˆenfase em aspectos estat´ısticos da teoria da decis˜ao, ´e o texto de Berger (1985). Mais recentemente temos um texto excelente, a n´ıvel introdut´orio, de Clemen (1996). Diversos aspectos operacionais s˜ao exemplificados uti-
  • 19. 1.2. SOBREVOANDO O LIVRO 5 lizando um software espec´ıfico - o DPL. Al´em disto, aspectos de teoria da utilidade multi-atributo s˜ao discutidos a um n´ıvel intermedi´ario. 1.2 Sobrevoando o livro Utilizaremos um exemplo muito simples para promover um sobrevˆoo da metodologia apresentada nos pr´oximos seis cap´ıtulos e apˆendices. Este exemplo ´e baseado no famoso artigo The rev counter decision, P.G. Moore and H. Thomas, (1973), Opl.Res. Q., 24, 337-351. Parte 1: Coloca¸c˜ao do problema e an´alise preliminar Uma f
  • Search
    Related Search
    We Need Your Support
    Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

    Thanks to everyone for your continued support.

    No, Thanks