i
r
o
o
a
r
g
y
3
2
)
 Available
 
online
 
at
 
ScienceDirect 
 journalhomepage:www.elsevier.com/locate/etap
Evaluation
 
ofthe
 
protectiveeffect 
 
of 
 
Ilex paraguariensis
and
 
Camelliasinensis
 
extractson
 
the
 
prevention
 
ofoxidative
 
damage
 
caused byultraviolet 
 
radiation
MarlonBarg
a
,
 
GislaineT.Rezin
b
,
 
DanielaD.
 
Leffa
c
,
 
FernandaBalbinot
c
,Lara
 
M.Gomes
a
,
d
,
 
MilenaCarvalho-Silva
a
,
d
,FrancieliVuolo
a
,
d
,FabriciaPetronilho
b
,
 
FelipeDal-Pizzol
a
,
d
,EmilioL.
 
Streck
a
,
d
,Vanessa
 
M.Andrade
c
,
a
LaboratóriodeBioenergética,ProgramadePós-Graduac¸ãoemCiênciasdaSaúde,UniversidadedoExtremoSulCatarinense,Criciúma,SC,
 
Brazil
b
LaboratóriodeFisiopatologiaClínicaeExperimental,ProgramadePós-Graduac¸ão
 
emCiênciasdaSaúde,UniversidadedoSuldeSantaCatarina,Tubarão,SC,Brazil
c
LaboratóriodeBiologiaCelulare
 
Molecular,ProgramadePós-Graduac¸ão
 
emCiênciasdaSaúde,UniversidadedoExtremoSulCatarinense,Criciúma,SC,Brazil
d
InstitutoNacionaldeCiênciaeTecnologiaTranslacionalemMedicina,HospitaldeClínicasdePortoAlegre,PortoAlegre,RS,Brazil
a
 
r
 
t
 
i
 
c
 
l
 
e
 
in
 
f
 
o
 Articlehistory:
Received26March2013Receivedin
 
revisedform3November2013Accepted28November2013Availableonline6December2013
Keywords:
SkincancerGreenteaMateteaDNAdamageOxidativedamage
a
 
bs
 
tr
 
a
 
ct
We
 
evaluatedtheeffectsgreenandmateteasonoxidativeandDNAdamagesinrats
 
exposedto
 
ultravioletradiation.Wereutilized70
 
adultmaleWistarratsthatreceiveddailyoralortopic
 
greenor
 
mateteatreatmentduringexposedtoradiationbysevendays.After,animalswere
 
killedbydecapitation.Thiobarbituricacid-reactivespecieslevels,proteinoxidativedamagewereevaluatedinskinandDNAdamageinblood.Ourresultsshowthatthe
 
ratsexposedto
 
ultravioletradiationpresentedDNAdamageinbloodandincreasedproteincar-bonylationandlipidperoxidationinskin.Oralandtopictreatmentwithgreenteaandmateteapreventedlipidperoxidation,bothtreatmentswithmateteaalsopreventedDNAdam-age.
 
However,onlytopictreatmentwithgreenteaandmateteapreventedincreasesinproteincarbonylation.Ourfindingscontributetoelucidatethebeneficialeffectsof 
 
greenteaandmatetea,hereindemonstratedby
 
theantioxidantandantigenotoxicpropertiespresentedbytheseteas.©2013ElsevierB.V.Allrightsreserved.
Correspondingauthorat
:Laboratóriode
 
BiologiaCelulareMolecular,Universidadedo
 
ExtremoSulCatarinense,UNESC,AvenidaUni-versitária,1105,88806-000Criciúma,SC,Brazil.Tel.:+5548
 
34312757.E-mailaddress:vmoraesdeandrade@yahoo.com.br(V.M.Andrade).1382-6689/$
 
seefrontmatter©2013ElsevierB.V.Allrightsreserved.http://dx.doi.org/10.1016/j.etap.2013.11.028
 
196
 
e
g
y
r
2
1.
 
Introduction
Overtheyears,changesinlifestylesignificantlyincreasedhumanexposuretosolarradiation,leadingtoa
 
dramaticriseintheincidenceofskincancer(Gruijl,1999).Photo-induced cancersareduetoacomplexmultistagephenomenon,medi-atedbyalterationsinseveralcellularmechanisms(Sarasin,1999).Increasedultravioletradiationexposureis
 
consideredthemaincauseoftherisingprevalenceofskincancer(Vriesetal.,2005).
 
Inhumansandanimalmodels,bothultravioletAandBradiationscancausegenemutations(Agaretal.,2004;MelnikovaandAnanthaswamy,2005)andimmunitysuppres-sion(Hallidayetal.,2004;Ullrich,2005).Thesetwobiological eventsarerelatedtoskincancercausedbyultravioletradia-tion(GransteinandMatsui,2004). UltravioletA
 
andBradiationsareresponsibleforirreversiblegeneticalterations,whichultimatelyleadtoDNAmutations(Sarasin,1999).Theimplicationofultravio- letAradiationto
 
thisgenotoxicdamagehasbeenrecentlyproven,althoughitsaccuratebiologicaleffectsarestillunclear(BachelorandBowden,2004).ThereactiveoxygenspeciesproductionbybothultravioletAandBradiationsalsocontributestoinflammation,immuno-suppression,genemutationandcarcinogenesis(Halliday,2005;KvamandTyrrell,1997).Inaddition,studieshaveshownthatoxidativestressalsocancauseDNAdamage(Wanget
 
al.,1998;Wattet
 
al.,2007).DNAdamagecanincludechemicalandstructuralmodificationstopurineandpyrimidinebasesand2
-deoxyribose,apartfromthe
 
formationofsingle-anddouble-strandbreaks.StrandbreakswithinDNAcanoccureitherdirectly,duetodamagefromreactiveoxygenspeciesexposure,or
 
indirectly,duetocleavageoftheDNAbackboneduringDNAbaseexcisionrepair(El-KhamisyandCaldecott,2006;Emerit,1994).Previousstudieshaveshownthatpolyphenolspresentingreentea(
Camelliasinensis
)canreduceultravioletradiations-inducedskincancerin
 
animalmodel(Mantenaetal.,2005). Greenteais
 
manufacturedfromthe
 
freshleavesoftheplant
C.sinensis
.
 
Theleavesofthisplantareimmersedinboilingwateraprocessthat,forthemostpart,preventsoxidationandpoly-merizationofthe
 
plant’spolyphenols.Itisthesecompoundsthatarethoughtto
 
bethemajorchemopreventivemediators(Yusufetal.,2007).Anotherteapresentingantioxidantpropertiesandprotec-tionagainstDNAoxidationismateteaoryerbamate(
Ilex paraguariensis
).Mateteaextract,madefromdriedleavesof 
I. paraguariensis
,
 
isa
 
tea-likebeverageconsumedin
 
SouthAmer-ica,mainlyinArgentina,Brazil,ParaguayandUruguay.Itspop-ularityiswidelyincreasingin
 
Europesinceitisacommerciallyavailableproductsoldasantirheumatic,diureticandcentralnervoussystemstimulant(Bracescoetal.,2003;Gugliucci,1996).Yerbamateis
 
richinseveralbioactivecompoundssuchascaffeine,phenolicacidsandsaponins,whichareabsorbedbythebodyandmay
 
actasantioxidantsorasfreeradicalscav-engers(Bastosetal.,2006;Filipetal.,2000;Gugliucci,1996;Ramirez-Maresetal.,2004;Schinellaet
 
al.,2000).Consideringthatultravioletradiationexposureinducesgenemutationsandleadstoan
 
increasedreactiveoxygenspeciesproduction,whichenhancesthisharmfuleffect,andthatgreenteaandmateteapossiblypresentantioxidantprop-ertiesandprotectionagainstDNAdamage,thepresentworkevaluatesthe
 
effectofgreenteaandmateteaonthiobarbituricacid-reactivespecieslevels.Oxidativedamageto
 
proteinsandDNAdamageinratsexposedtoultravioletradiationwerealsoassessed.
2.
 
Materials
 
and
 
methods
2.1.
 
 Animals
AdultmaleWistarrats(250–300g)
 
obtainedfromCentralAni-mal
 
HouseofUniversidadedoExtremoSulCatarinensewerehousedinsevengroupsoftenanimalstotaling70individ-ualswithfreeaccesstofoodandwater,andmaintainedona
 
12-hlight–darkcycle(lightsonat7:00a.m.)at22
C
 
±
 
1
C.AllexperimentalprocedureswerecarriedoutinaccordancewiththeNationalInstitutesofHealthGuideforthe
 
CareandUseofLaboratoryAnimalsandtheBrazilianSocietyforNeu-roscienceandBehavior(SBNeC)recommendationsforanimalcare,withtheapprovaloflocalEthicsCommittee.
2.2.
 
Experimental
 
 procedure
Animalsweredividedintosevengroups,as
 
follows:(1)controlgroup,(2)oralsaline+ultravioletradiation,(3)basegel
 
+ultravioletradiation,(4)oralgreentea+ultravioletradi-ation,(5)greenteagel+ultravioletradiation,(6)oralmatetea+ultravioletradiation,(7)mateteagel+ultravioletradia-tion.Groups2,4,and6weretreatedforsevendaysorallywithsaline,greenteaandmatetea(respectively).Groups3,5,and7
 
weretreatedforsevendaystopicallywithbasegel,greenteagel
 
andmateteagel.Aftertreatment,animalswereexposedtoultravioletradiationfor1
 
h,onceaday.Ratswerekilled24hafterthe
 
lastexposuresessiontoultravioletradi-ation.BloodwascollectedtoevaluateDNAdamageandthewholeskin,wasremovedoftheanimaltoevaluateoxidativedamageparameters.
2.3.
 
Oral
 
administration
 
of 
 
theextracts
GreenandmateteadryextractswasobtainedfromEmbra-farma.ThesolutionswereprepareddailyinagreementwiththeBrazilianPharmacopeia.Adding15mL
 
ofboilingwaterto1.875gofgreenteaextractand20gofmateteaextractto
 
100mL
 
ofboilingwater.Aftera
 
15-minextractionperiod,thesolutionswerefilteredandadministeredtoanimals.Theanimalsreceived0.70g/kg 
 
ofmateteaand0.45g/kggreenteasolutionsdailybygavage,30
 
min
 
beforeexposuretoultravioletradiation.Controlgroupsreceivedsaline(NaCl0.9%).
2.4.
 
Topic
 
administration
 
of 
 
the
 
extracts
Theaqueousextractswereobtainedas
 
describedaboveandwereincorporatedtobasegel(5%,w:w).Onegramofgelwasapplieddailyona
 
6cm
×
 
3
 
cmskinareapreviouslyshavenoneachratsback30min
 
beforeexposuretoultravioletradiation.Controlgroupsreceivedbasegelwithoutanyextract.
 
i
r
o
o
l
o
g
y
m
o
l
o
g
y
197
Fig.1Cometassay.EvaluationofDNAdamageusingethidiumbromide(400
×
 ).Thecellsare
 
assessedvisuallyandreceivedscoresfrom0(undamaged)to
 
4(maximallydamaged),accordingtothesizeandshapeofthetail.
2.5.
 
Exposure
 
to
 
radiation
AnimalswereexposedtoultravioletAandBradiationsfor7days.UltravioletA
 
andBlampswereusedwithemissionspec-trumof280–320nmforUVB,and320–400nmforUVA.Theratsbackwereatadistanceof60cmfromthefluoresanslamps.Ratswereirradiatedfor1hperday,allatthesametime.Intotal,70ratswereusedin
 
thepresentstudy.Allanimalswerekeptincagesthroughouttheexperiment(5
 
animalspercage,14cages).
2.6.
 
Comet
 
assay
A
 
standardprotocolforCometassaypreparationandanalysiswas
 
adoptedfromTiceetal.(2000).Theslideswerepreparedbymixing5
Lofwholebloodwith95
L
 
oflow-melting-pointagarose(0.75%).Themixture(cells/agarose)wasaddedtoafullyfrostedmicroscopeslidecoatedwitha
 
layerof500
Lof normallymeltingagarose(1%).Aftersolidification,thecov-erslipwasgentlyremoved,andtheslideswereplacedinlysissolution(2.5MNaCl,100mM
 
EDTA,and10mMTris,pH10.0–10.5,withfreshlyadded1%TritonX-100and10%DMSO)for1day.Subsequently,theslideswereincubatedinfreshlypreparedalkalinebuffer(300mM
 
NaOHand1
 
mM
 
EDTA,pH13)for20min.TheDNAwas
 
electrophoresedfor15min
 
at25V(0.90V/cm)and300mA.
 
Afterelectrophoresis,theslideswereneutralizedwithTrisbuffer(0.4M;
 
pH7.5).Finally,theDNAwasstainedwithethidiumbromide.Imagesof100ran-domlyselectedcells(50cellsfromeachoftworeplicateslides)fromeachanimalwereblindlyanalyzedusinga
 
fluorescencemicroscopeequippedwithanexcitationfilterofBP546/12nmanda590nmbarrierfilter.Cellswerescoredfrom0(undam-aged)to4(maximallydamaged)accordingtothetailintensity(sizeandshape),resultingin
 
asingleDNAdamagescore(dam-ageindex)foreachsampleand,consequently,foreachgroup.Thus,adamageindex(DI)ofthegroupcouldrangefrom0(completelyundamaged100=cells
×
0)
 
to400(maximumdamage=100cells
×
4)(Collins,2004)
 
(Fig.1).Thepercentagedamagefrequency(DF)
 
wascalculatedforeachsampleonthebasisofthenumberofcellswithatail
versus
withnotail.
2.7.
 
Thiobarbituric
 
acid
 
reactive
 
species
 
(TBARS)
Asanindexofoxidativedamage,weusedtheformationofTBARSduringanacid-heatingreaction,whichiswidelyadaptedasa
 
sensitivemethodformeasurementoflipidper-oxidation,aspreviouslydescribed(DraperandHadley,1990).Briefly,samplesweremixedwith1mL
 
oftrichloroaceticacid10%(TCA)and1mL
 
ofthiobarbituricacid0.67%(TBA),and
Fig.2Mean
±
SD)valuesofdamageindexobservedinperipheralbloodofratstreatedwithgreenteaandmate
 
tea,oralandtopic,andsubmittedto
 
radiation.*Datasignificant inrelationto
 
controlat 
P
 
<0.05(Kruskal–Wallis,Dunn).
thenheatedina
 
boilingwaterbathfor15min.TBARSweredeterminedbyabsorbanceat535nm.
 
Resultsareexpressedas
 
malondialdehyde(MDA)equivalents(pmol/mgprotein).
2.8.
 
Measurement
 
of 
 
 protein
 
carbonyls
Theoxidativedamageto
 
proteinswasassessedbythedeterminationofcarbonylgroupsbasedonthe
 
reactionwithdinitrophenylhydrazine(DNPH)aspreviouslydescribed(Levineetal.,1990).Briefly,proteinswereprecipitatedbytheadditionof20%
 
trichloroaceticacidandredissolvedin
 
DNPH,andtheabsorbancereadat370nm.
 
Resultsareexpressedasproteincarbonyls(pmol/mgprotein).
2.9.
 
Statistical
 
analysis
FortheanalysesofDNAandoxidativedamageparameters,alldatawereexpressedasmean
±
 
standarddeviation(SD).Differencesamongexperimentalgroupsweredeterminedbyone-wayanalysisofvariance(ANOVA)whennormaldistri-butionwasobserved.MultiplecomparisonswereperformedbyDuncantest.Whennonnormaldistributionwasobserved;comparisonsweremadeusingtheKruskal–WallistestwithDunn’stestas
 
 posthoc.
Inallexperiments,
P
<0.05was
 
consideredtoindicatesta-tisticalsignificance.Allanalyseswereperformedusingthe5.0BioEstatsoftware.
3.
 
Results
Thepresentstudyshowedthatultravioletradiationexpo-surepresentedhigherlevelsofDNAdamageinperipheralbloodinbothparametersofthecometassay,damageindex(Fig.2)anddamagefrequency(Fig.3)(
P
<0.05;Kruskal–Wallis,Dunn).We
 
alsoshowedthatwasincreasedthiobarbituricacid-reactivespecieslevels(Fig.4),andproteincarbonylation(Fig.4) (
P
<0.05;ANOVADuncan).Resultsforanimalstreatedwithboth
 
typesofherbsinthetwoadministrationroutesshowedthatonlymateteacansig-nificantlyreverseDNAdamagecausedbyUV
 
radiation,unlikegreentea,whichdoesnotpresenttheseprotectiveeffectsforthegenome,as
 
observedinthe
 
highlevelsofDNAdamagewhenorallyadministered,in
 
comparisontothecontrolgroup
 
198
 
e
g
y
r
2
Fig.3Mean
±
SD)valuesofdamagefrequencyobservedinperipheralbloodofratstreatedwithgreenteaandmatetea,oralandtopic,andsubmittedtoradiation.*Datasignificantin
 
relationto
 
controlat 
P
 
<0.05(Kruskal–Wallis,Dunn).
(
P
<0.05;Kruskal–Wallis,Dunn).However,bothparametersof thecometassay(Figs.2and3)
 
revealedthatthisherbledtoasimilardecreaseinDNAdamagein
 
animalstopicallytreatedwithmatetea.Furthermore,weobservedthatoralandtopictreatmentswithgreenteaor
 
mateteapreventedtheincreasedlipidper-oxidationinducedbyultravioletradiationexposure(Fig.4)(
P
<0.05;ANOVADuncan).However,proteincarbonylationwasonlypreventedbytopictreatmentwithgreenteagel
 
andmateteagel.Oraltreatmentwithgreenormateteasdid
 
notpreventtheincreasein
 
proteincarbonylationcausedbyultra-violetradiationexposure(Fig.5)(
P
<0.05;ANOVADuncan).
4.
 
Discussion
Exposureto
 
solarultravioletradiationinducesinflammatoryresponses,oxidativestress,immunosuppression,DNAdam-ageandgenemutations,eventsrelatedto
 
skindiseases,includingskincancer(Katiyaretal.,2000,2007;Katiyar,2006).Multiplestudieshavedemonstratedarelationshipbetweenultravioletexposureandincreasedriskofdevelopingskincancer.Itwas
 
postulatedthatexposureofthe
 
skintosolarultravioletlightis
 
a
 
majorriskfactorforthedevelopmentof malignantmelanomaandnon-melanomaskincancer,and
Fig.4Mean
±
SD)valuesofthiobarbituricacid
 
reactivesubstances(TBARS)in
 
skinofratstreatedwithgreenteaandmate
 
tea,oralandtopic,andsubmittedtoradiation.*Datasignificantinrelationtocontrolat 
 
P
<0.05(one-wayANOVA,Duncantest).Fig.5Mean
±
SD)valuesofproteincarbonylcontentinskinofratstreatedwithgreenteaandmate
 
tea,oralandtopic,andsubmittedtoradiation.*Datasignificantinrelationtocontrolat 
P
<0.05(one-wayANOVA,Duncantest).
thatthiseffectis
 
mediatedbya
 
chainofevents,includinDNAdamagebyultravioletlightandsubsequentformationofmutations(Runger,2003).Inthelifeofa
 
cell,DNAdamagerepresentsa
 
greatthreattogenomestability,leadingtolossor
 
amplificationofchromosomalactivity,whichmay
 
resultin
 
carcinogene-sisor
 
tissueaging(Nakanishietal.,2009).
 
Genomeintegrityiscontinuouslythreatenedbybothendogenous(
e.g.
reac-tiveoxygenspeciesproducedbynormalmetabolism,DNAreplication‘errors’)andexogenous(ultravioletlight,ionizing radiationsandchemicalcarcinogens)factors(Mocellinetal.,2009).InthepresentstudyweobservedtheoccurrenceofDNAdamagein
 
peripheralbloodandoxidativedamagein
 
the
 
skinofratsexposedtoradiation.Onthe
 
otherhand,weshowedthatgreenandmateteasadministeredthroughtwodifferentroutes(oralandtopicgel)havepreventedradiation-inducedlipidperoxidation.However,proteincarbonylationwas
 
pre-ventedonlybygreenandmateteasusedas
 
gel.
 
Also,onlytopicallyadministeredmateteapreventedtheharmfuleffectsofUVradiationtogeneticmaterial.ThestudyTürko ˘ gluet
 
al.(2010)showedthatnoUV-inducederythemawasobservedattheblackandgreenteagel
 
sitesinanyofthesubjects.UV-inducederythemawasconsistentlypresentin
 
variousgradesatcaffeinegel,carbomergel,andcontrolsites.Therefore,teaextractswerefoundtobepromis-ingcandidatesfortheirabilitytoprotectagainsttheharmfuleffectsofUVradiation,suchas
 
erythemaandprematureaging oftheskin.Studiesshowedthatconsumptionofgreenteapolyphe-nolsindrinkingwaterpreventsphotocarcinogenesisin
 
mice;however,themolecularmechanismsunderlyingthiseffecthavenotbeenfullyelucidated(Meeranetal.,2009).Studyof Xuetal.(2010)showedthatgreenteapolyphenolseffectivelysuppressedthedecreasein
 
viabilityoftheUVBstressedretinalpigmentepithelialcellsandtheUVBsuppressionofsurvivinggeneexpressionlevel.GreenteapolyphenolsalleviatedmitochondriadysfunctionandDNAfragmentationinducedbyUVB.Polyphenolsisolatedfromtheleavesofgreenteahavea
 
numberofbenecialhealthyeffects,includinganti-carcinogenicactivity,whichhasbeendemonstratedin
 
various
 
i
r
o
o
l
o
g
y
m
o
l
o
g
y
199
tumormodels(KatiyarandMukhtar,1996;Yangetal.,2002).Ithasbeenalsoshownthatoraladministrationoanaqueousextractofgreenteaorgreenteapolyphe-nols(amixtureofpolyphenols)in
 
drinkingwaterinhibitsultravioletradiation-inducedskincarcinogenesisinmiceintermsoftumorincidence,tumormultiplicityandtumorgrowth/size(Mantenaetal.,2005;Wanget
 
al.,1992).Inaddition,UVexposurecausesphysicalchangestotheskinduetoalterationsthatoccurin
 
the
 
connectivetissue
via
theformationoflipidperoxides,cellcontentsandenzymesandreactiveoxygenspecies(Benaigesetal.,
 
1998;Kauretal.,2006).Otherstudiesshowedthatgreenteaalsoexertsanti-oxidantactivity(Mantenaetal.,
 
2005;Okayasuetal.,2003).Flavonoidsandphenoliccompoundswereprovedtobepresentinmatetealeaves,andtheconsumptionofthesecom-poundshasbeenassociatedwiththepreventionofage-relatedchronicconditions,includingcancer(McKayandBlumberg,2002;Weisburger,2002).Variousphytochemicalconstituents,suchasflavonoids,havebeenisolatedfrommateplantsandrelatedspecies,andsomeofthesecompoundsmay
 
berespon-siblefortheobservedantioxidantactivity(Schinellaet
 
al.,2000).Furthermore,datafrom
invitro
and
in
 
vivo
studiessug-gestapotentialbeneficialeffectofteapolyphenolsagainstcanceratmoststagesofdevelopment(Hiroseet
 
al.,
 
2002;SuandArab,2002;Tapieroet
 
al.,
 
2002).Inthisscenery,studyoChandraandDeMejia(2004)showedthattheconcentrationofpolyphenolsingreenteaismajorwhencomparedwithmatetea.Thus,the
 
concentra-tionofgreenandmateteausedinthepresentstudyresultinamountspolyphenolssimilarin
 
bothteas.Conversely,many
 
studiesincellculturemodelsaswellasinanimalsseemtoconvergetoshowan
 
antimutagenicandDNAprotectingeffectfor
I.paraguariensis
extractsanditsindividualcomponents,chlorogenicacid,rutinandquercetin(Bracescoetal.,
 
2003;Mirandaetal.,2008).Studyof Leonardetal.(2010)indicatedthatmatescavengedhydroxylradi-calsandsuperoxideradicals.Thisstudyindicatesthatmatepossessespotentantioxidanteffectsagainsthydroxylandsuperoxideradicalsinchemicalandcellculturesystems,aswellasDNA-protectiveproperties.Besides,studyof Mirandaetal.(2008)showedthatmateteaisnotgenotoxicin
 
liver,kidneyandbladdercells.Theregularingestionofmateteaincreasedtheresistanceof DNAtoH
2
O
2
-inducedDNAstrandbreaksandimprovedtheDNArepairafterH
2
O
2
 challengeinlivercells.TheseresultssuggestthatmateteacouldprotectagainstDNAdamageandenhancetheDNArepairactivity.Protectionmay
 
beattributedto
 
theantioxidantactivityofthematebioactivecompoundscitedabove(Bracescoet
 
al.,2003;Mirandaetal.,2008).However,studyof Wnuk
 
et
 
al.(2009)
invitro
culturedhumanlymphocytesindicatesthatmateinfusionmaycausebothcytotoxicandgenotoxiceffects.Differencesconcentrationsofmatefrom1to
 
1000
g/mLwasevaluatedandfoundthat10
g/mLofmatesignificantlyincreasedthefrequencyof micronucleianddecreasedthe
 
nucleardivisionindexvalue.Atthehigherconcentrationsof100and1000
g/mL,matewasresponsibleforan
 
augmentationinthe
 
levelofapop-toticandnecroticcells.Moreover,nogenotoxiceffectofmate(175–1400
g/mL)onhumanlymphocyteswasreportedbyAlvesetal.(2008).Inconclusion,weshowedthattheexposureofratstoradia-tionledto
 
DNAandoxidativedamage,andthatgreenteaandmateteahavepreventedtheseeffects.Ourdataare
 
in
 
linewithpreviousworksthatdemonstratedtheanti-carcinogenicandantioxidantactivitiesofgreenteaandmatetea.
Conflict 
 
of 
 
interest 
 
statement 
Theauthorsdeclarethattherearenoconflictsofinterest.
Acknowledgment 
ThisresearchwassupportedbygrantsfromUniversidadedoExtremoSulCatarinenseUNESC(Brazil).
Appendix
 
A.
 
Supplementary
 
data
Supplementarydataassociatedwiththisarticlecanbe
 
r
 
ef
 
e
 
r
 
e
 
n
 
c
 
e
 
s
Agar,N.S.,Halliday,G.M.,Barnetson,R.S.,Ananthaswamy,H.N.,Wheeler,M.,Jones,A.M.,2004.ThebasallayerinhumansquamoustumorsharborsmoreUVAthanUVBfingerprintmutations:aroleforUVAinhumanskincarcinogenesis.Proc.Natl.Acad.Sci.U.S.A.101,49544959.Alves,R.J.,Jotz,G.P.,doAmaral,V.S.,Montes,T.M.,Menezes,H.S.,de
 
Andrade,H.H.,2008.Theevaluationof 
(
)
 
)infusions.J.FoodCompos.Anal.19,538543.Benaiges,A.,Marcet,P.,Armengol,R.,Betes,C.,Gironés,E.A.,1998.Studyoftherefirmingeffectof 
a
 
plantcomplex.Int.J.Cosmet.Sci.20,223233.Bracesco,N.,Dell,M.,Rocha,A.,Behtash,S.,Menini,T.,Gugliucci,A.,Nunes,E.,2003.Antioxidantactivityofabotanicalextractpreparationof 
 
)
 
of 7