Data & Analytics

Air stability of C60 based n-type OFETs

Description
Air stability of C60 based n-type OFETs
Published
of 4
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Share
Transcript
  SyntheticMetals 188 (2014) 136–139 ContentslistsavailableatScienceDirect Synthetic   Metals  journalh   omepage:www.elsevier.com/locate/synmet Air   stability   of    C 60  based   n-type   OFETs Rizwan   Ahmed a , b , ∗ ,Clemens   Simbrunner a ,   Günther   Schwabegger a ,   M.A.Baig b ,H.   Sitter a a InstituteofSemiconductorandSolidStatePhysics,JohannesKeplerUniversität,Linz,Austria b NationalCenterforPhysics,Quaid-i-AzamUniversityCampus,Islamabad,Pakistan a   rti   c   le   i   nf   o  Articlehistory: Received26July2013Accepted11December2013 Keywords: C 60 Airstabilityn-TypeOFETsSinglelayerencapsulationBilayerencapsulation(parylene+BCB) a   b   s   t   ra   ct Airstability   of    C 60  basedn-typeOFETs   wasinvestigated.At   ambientconditions,the   unencapsulatedOFETsshow   rapiddegradation   insource-drain   currents.In   orderto   studythe   effects   of    encapsulationlayers   on   airstability,   the   OFETs   were   encapsulated   with   singlelayersandbilayers.The   OFETs   protectedbybilayer   encapsulation   showbetter   airstability   as   compared   to   asingle   layerencapsulation.It   hasbeen   found,   thatthe   barrier   performance   of    the   encapsulation   layercan   be   improvedby   decreasing   thesurface   roughnessof    the   encapsulation   layer.   Our   proposed   encapsulation   layersfor   n-type   OFETs   aretransparentandflexible.Therefore,it   can   be   usedtoencapsulate   all   type   of    organicsemiconductor   baseddevicesalso   onplastic   substratesfor   flexible   devices. © 2013 Elsevier B.V. All rights reserved. 1.Introduction Conjugatedorganicmoleculeshavebeena   subjectof    wideinter-estfromthelasttwodecadesduetotheirpotentialcapabilitytofabricateultra-thinandflexibledevices,suchasorganicfieldeffecttransistors(OFETs),organiclightemittingdiodes(OLEDs),andpho-tovoltaiccells(PVs)[1,2].   OFETswillbethebasicbuildingblocksof futureorganicelectroniccircuits.Thelowerchargecarriermobilityandtheabruptdegradationinchargecarriermobilityatambientconditionsarethemajorhindrancesintherealizationof    OFETsinindustrialapplication.Thechargecarriermotilitiesin   n-typeandp-typeOFETshavebeenachievedcomparabletothoseof    amor-phoussilicon[3–5].Thesecondprincipleissuein   realizationof OFETsinindustrialapplicationis   theairstabilityofOFETs[6–10].Whenoperatedin   air,mostof    theorganicsemiconductorbaseddevicesshowanabruptdegradation,anditbecomesworsein   thecaseofn-typeOFETs.Fewp-typeOFETswithhighchargecarriermobilityandgoodstabilityhavebeenreported[11–15].   Inrecentyearstheavailabilityof    n-typeorganicsemiconductorsisincreas-ingrapidly[16]butonlya   fewofthemshowenvironmentalstablecharacteristics[17,18].Actually,inn-typeOFETs,onapplicationof positivegatevoltage,anionsare   formedandtheseanionshavehighreductionpowersandcanreduceoxygenandwatermoleculesthathavebeendiffusedintothelayeroforganicmolecules.Inotherwordsthechargedstatesofn-typeOFETsarethermodynamicallyunstableandthedevelopmentofmethodsto   protecttheactive ∗ Correspondingauthorat:Instituteof    SemiconductorandSolidStatePhysics, JohannesKeplerUniversität,Linz,Austria.Tel.:+4373224689659/+923349581829. E-mailaddresses: rizwan.ahmed@ncp.edu.pk,riz.phy@gmail.com(R.Ahmed). layerfromenvironmentaleffectsisstronglyrequired.Oneoptionisthedevelopmentofkineticbarriers,whichlimitthediffusionofaircontaminationtothechannelregion.Thismightbepossi-blebyintroducingfluorineatoms,which,dueto   theirhydrophobicnature,mightpreventthediffusionof    waterandoxygenintothesemiconductinglayer.Byusingthiskineticbarriermethod,someorganicmoleculeshavealreadyachievedgoodairstability[19,20].Thesecondapproachto   overcometheproblemof    airstabilitymightbeachievedbya   thermodynamiccontrolofthesolubilityofoxy-genandwaterinthethinfilmof    organicsemiconductor.Itis   alsopossibletotunetheredoxpotentialsof    theorganicsemiconductorsitselfinsuchawaythatthereactivitywithO 2 andH 2 Obecomeslow[21,22].   Thethirdoptionisthedeviceencapsulationbydielectriclayers,whichcanalsopreventthediffusionofoxygenandwatervaporstothechannelregionof    OFETs[23,24].   Numerouseffortsweremadeforthedevelopmentof    differentencapsulationlay-ersincludingthin-filmcoatings,metalorglasslidswithUV-curedsealing,inertgases(Ar,N 2 )   filledwithinsealedvolumeandget-termaterials(barium,calcium)to   removeresidualwatervaporswhichdiffusesthroughsealants[25–28].   Therigidmaterialsarenotamendableforencapsulations,buttheflexibleencapsulationlayershaveattractedmostoftheattentiondueto   lightweight,trans-parency,mechanicalflexibilityandlowcostof    fabrication[29,30].Singlelayerfilmsarelimitedin   theirperformancemainlyduetothepresenceof    defectsinthefilms,whichprovidepathwaysforwatervaporandoxygentopermeatethroughtheencapsulationlayer[31,32].   Byapplyingmultilayerfilmswithalternatingmate-rials,thedefectswhichspantheentirethicknessof    theindividualinorganic/organiclayerscanbeinterruptedwhichdecreasesthepermeationof    watervapourandoxygenthroughtheencapsulationlayer[33–35]. 0379-6779/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.synthmet.2013.12.007  R.    Ahmedetal./    SyntheticMetals 188 (2014) 136–139 137  Al AlGlass    AlParylene Al AlC 60    Al AlGlass    AlParylene Al Al   C 60Parylene (1µm)  Al AlGlass    AlParylene Al    AlC 60 Parylene (500nm) BCB(500nm) (a) (b) (c) Fig.1. Schematicdiagramsof    OFETs(a)   unencapsulated,(b)encapsulatedwitha1    mthicklayerofparylene,(c)encapsulatedwitha500nmthicklayerof    parylenefollowedby   a500nmthicklayer   of    BCB. C 60  isann-typeorganicsemiconductor.It   hasahighchargecar-riermobilitybutwithpoorairstability.Theair   stabilityof    C 60 basedn-typeOFETsneedstobeimprovedforpossibleindustrialapplica-tions.Inthiscommunication,wearepresentingastudyconcerningtheairstabilityofC 60  basedn-typeOFETs.Threetypesofbottomgate-topcontactsOFETswerefabricated,usingC 60 as   anactivelayerandparyleneasagatedielectric.Twoof    themwereencapsulatedwithtwodifferentencapsulationlayers.ThechargecarriermobilityofallthreeOFETswasmonitoredoutsidethegloveboxinambientconditions,for12days. 2.Experimentaldetail ForthefabricationofOFETs,glasssubstrateswerecleanedinanultrasonicbathusingacetone,Helmanexglasscleaningsolu-tion,andde-ionizedH 2 Oandfinallydriedwitha   flowof    N 2 .A0.5mm   wideand70nmthickgateelectrodeof    Aluminum(Al)wasevaporatedusinga   shadowmask.Parylenewas   usedasagatedielectric.Thedepositionof    parylenewasdonein   ahomemadesystem,whichis   basedona   three-zoneprocess.Firstthedimerdi-chloro-di-p-xylyleneisevaporatedatatemperatureof100 ◦ C,nextthevaporsispassinga   hightemperaturezone(750 ◦ C)wherepyrolysisleadstocleavageofthedimers.Theresultingmonomersarefinallydepositedatroomtemperatureonthesamplesurface,wheretheyspontaneouslypolymerizetoformatransparentandconformalthinfilm.Theprocessiscarriedoutatapressureof 10 − 2 mbarandfortheOFETfabricationa   dielectriclayerthick-nessof1  mwasused.C 60  wasevaporatedasreceivedfromMER Corp.A200nmthickfilmofC 60  wasgrownbyhotwallepitaxy(HWE)atasubstratetemperature T  sub =100 ◦ C,   sourcetemperature T  s =360 ◦ Candwalltemperature T  wall =   400 ◦ Cwitha   backgroundpressureof10 − 6 mbar.For   topcontactelectrodes,LiF/Alwas   evap-oratedunderhighvacuumof    10 − 6 mbar,usingashadowmask.Thechannellength L   andwidth W  intheOFETswere70  mand1.5mm,respectively.Devicetransportationfromthehot-wallreactortothegloveboxfortop-contactevaporationwascarriedoutunderambi-entconditions.Usingthesameprocedurethreetypesof    OFETswerefabricated.Onekindwasencapsulatedbya1  mthickparylenelayer.Thesecondkindwasencapsulatedbya   500nmthickparylenelayerfollowed500nmthickbenzocyclobutene(BCB)layerandthethirdtypeofOFETremainedunencapsulated.Beforetheelectricalcharacterizationallthreekindsof    OFETswereannealedat150 ◦ Cinsidetheglovebox.Theschematicdiagramsof    allthreetypesof OFETsarepresentedinFig.1.AllthreeOFETswereexposedto   airandthetransfercharacteristicsweremonitoredfor12days,Dur-ingtheperiodofinvestigation,alldeviceswerestoredoutsidethegloveboxandelectricalstresswasappliedonlyfora   shorttimetoregisterthetransfercharacteristics. 3.Resultanddiscussion ThetransfercharacteristicsofunencapsulatedOFETsweremon-itoredatambientconditions.Thesource-draincurrent( I  DS )   of    theunencapsulatedOFETdecayedbyoneorderof    magnitudein90min.Thetransfercharacteristicsmeasuredduringtheexposuretimetoambientconditionsareshownin   Fig.2(a).Thethresholdvoltagealsoshiftsto   highergatevoltages.Itmeansthattheoxygenandwatervaporwerecreatingchargetrapstates[36]andconsequentlyfillingof    thesetrapstatesrequiresahighergatevoltageforOFEToperation.Thetransfercharacteristicsof    OFETswithanencapsulationlayerof    parylene(1  m)   only,was   alsomonitoredatambientconditionsfortwelvedays.Theencapsulationlayerof    paryleneimprovedtheairstabilityof    C 60  basedn-typeOFET.Thetransfercharacteristicsof    encapsulated(parylene/1  m)OFETsweremeasuredatambientenvironmentandare   presentedin   Fig.   2(b).Adecayof    oneorderofmagnitudein I  DS  was   foundafter12days.Theonsetvoltageremainsthesamebuta   smallshiftinthethresholdvoltagewasobserved.Theslowdegradationof    I  DS ,measuredinencapsulated(parylene/1  m)   OFET,may   beattributedtotheslowpermeationof    watervaporsandoxygenthroughtheparyleneencapsulationlayer.Toovercometheproblemof    slowpermeationofwatervaporsandoxygenthroughtheencapsulationlayer,a   bilayerencapsula-tionwas   applied.TheOFETsencapsulatedwithparylene(500nm)followedbyBCB(500nm)   wereexposedtoambientconditions.Thetransfercharacteristicsweremonitoredfor12daysoutsidethegloveboxandare   presentedin   Fig.2(c).   Interestingly,stablecharacteristicswithoutanyhysteresisweremeasuredwitha   smalldegradationin I  DS .It   is   worthtomention,thatduringtheperiodof investigations,allthreetypesOFETs(unencapsulatedandencap-sulated)werestoredandmeasuredin   ambientconditioninthepresenceofordinarylight.Inordertocomparetheair   stabilityof    allthreeOFETs,the I  DS was   measuredatfixed V  GS = V  DS =   50V.Thechangesin I  DS  withrespecttotimeof    exposuretoambientconditionsare   presentedinFig.3(a).The I  DS  inunencapsulatedOFETsdecayedrapidly.TheOFETsencapsulatedwitha   parylenelayershows70%degradationin   12days.TheOFETsencapsulatedwitha   bilayerdielectric(pary-lene+BCB)didnot   showanydegradationinfirst3days,butthenstartedslowlydecayingandshowedonly30%degradationin   I  DS within12days.Thechargecarriermobilityof    allthreetypesof OFETs(encapsulated/unencapsulated)wasalsoestimatedfromthetransfercharacteristicsmeasuredduringthe12daysofinvestiga-tions.Thechangesinthenormalizedchargecarriermobilityof    allthreekindsofOFETs(encapsulated/unencapsulated)arepresentedinFig.3(b).Thechangesinthechargecarriermobilitywithrespectto   ambientenvironmentexposuretime,obeythesamebehaviorasobservedin   thecaseof    I  DS  (seeFig.3).ThisobservedconsistencyinallthreeOFETs,providesevidencethatthemeasureddegradationinthe I  DS  isduetothedegradationin   thechargecarriermobility.Inordertounderstandtheimprovementin   barrierperfor-manceof    bilayerencapsulation,asurfacecharacterizationof    theseencapsulationlayerswasperformedbyatomicforcemicroscopy(AFM).TheAFMimagesof    paryleneandBCBlayersarepresentedinFig.4.TheAFMimageof    parylenecanbedescribedasgrainlikestructurewhilethesurfaceofBCBencapsulationlayeris   muchsmoother.Therootmeansquare(RMS)valueof    surfaceroughnessofparyleneencapsulationlayerwas   3nmwhiletheRMS   valueof    bilayerencapsulationwas   tentimeslower(only0.3nm).A  138  R.Ahmedetal./SyntheticMetals 188 (2014) 136–139 -10   0 10 20 30 40 5010 -11 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5 12 min30 min90 min6 min2 min0 min       I       D      S       (      A      ) V GS (V) (a)   Without   encapsulation -10   0   10   20   30   40   5010 -1 1 10 -1 0 10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 V GS (V) Inside Glovebox(GB)Ist   day   outside   GB2nd day outside GB4th day outside GB9th   day   outside   GB12th day outside GB (b) Encapsulated with parylene (1  µ m )      I      D     S      (     A     ) -10   0   10   20   30   40   5010 -1 1 10 -1 0 10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4       I       D      S       (      A      ) V GS (V) Inside   Glovebox   (GB)Ist   day   outside   GB2nd   day   outside   GB4th   day   outside   GB9th   day   outside   GB12th   day   outside   GB (c)   Encapsulated   with   parylene   (0.5   µ m )and   BCB   (0.5   µ m ) Fig.2. Transfercharacteristicsmeasuredinambientcondition(a)   withoutencapsulation,(b)encapsulatedwith1  mthicklayerof    parylene,(c)encapsulatedwith0.5    mthick   layerofparylenefollowedby   0.5    mlayerof    BCB. 0   48   96   144   192   240   288   3360.00.20.40.60.81.00   1   2   3   4   5   6   7   8   9   10   11   12   13   14 (b) without   encapsulationwith   encapsulation   layer    of    Parylene   (1 µ m)with   encapsulation   layers   of    Parylene   (0.5   µ m)and   BCB   (0.5   µ m)      N    o    r    m    a     l     i    z    e     d    m    o     b     i     l     i     t    y Time   (h) Time   (days) 0   48   96   144   192   240   288   3360.20.40.60.81.0 0   1   2   3   4   5   6   7   8   9   10   11   12   13   14      N    o    r    m    a     l     i    z    e     d     I      D     S Time   (h ) without   encapsulationwith   encapsulation   layer    of    Parylene   (1 µ m )with   encapsulation   layers   of    Parylene   (0.5   µ m )and   BCB   (0.5   µ m ) (a)   at   V DS =V GS =50V Time   (Days ) Fig.3. ComparisonofencapsulatedandunencapsulatedOFETs,(a)   normalized I  DS at V  DS  = V  GS  =50V   versustimeof    exposuretoambientconditions,(b)normalizedchargecarriermobilityversustimeof    exposuretoambientconditions. granularstructureasobservedforparylenelayerscontainsmanygrainboundaries.Consequently,itmay   be   thecase,whichagreaternumberof    waterandoxygenmoleculeswillpenetrateordiffusethroughintergranularpores[37].   Thedecreasein   thepermeabilityof    watervapourandoxygenthroughthebilayerencapsulationcanbeattributedtothesealingofgrainboundariesbythesmoothnessof    theBCBencapsulationlayer.Thismeasureddecreasein   permeabilitywithdecreasingsurfaceroughnessof  Fig.4. AFMimage(10  m ×   10  m)   of    (a)   paryleneencapsulationlayerwithRMSvalueof    surfaceroughness3   nm,   (b)BCBtoplayerofencapsulationwithRMS   valueof    surfaceroughness0.3nm.  R.    Ahmedetal./    SyntheticMetals 188 (2014) 136–139 139 the   encapsulationlayeris   ingoodagreementwithearlierstudies[37–39].ThesmallRMS   valueofthesurfaceroughnessof    BCBencapsulationlayerprovidesusmotivationtoencapsulatetheOFETswithasinglelayerof    BCB.Unfortunately,thespincoatingofBCBdirectlyontheactivelayer(C 60 )affectstheperformanceof OFETs,whichappearsasasignificantdegradationof  I  DS .Therefore,inthecaseofbilayerencapsulation,theparylenelayeralsoprotectsthe   C 60  activelayerduringspincoatingofBCB.Byapplyingbilayerencapsulation,thedefectsinthelowerparylenelayerare   blockedbytheBCBlayer.Thepermeationpathforwatervaporandoxygenbecometortuous,whichresultsin   animprovementofthebarrierperformance.Oneoftheuniquecharacteristicsof    organicsemiconductorsistheirpotentialapplicationforflexibleelectronics.For   theexperi-mentalrealizationof    flexibleelectronics,thestiffglasssubstratewillbereplacedbya   flexibleplasticsubstratesuchaspolyethyleneterephthalate(PET)orpolyethylenenaphthalate(PEN).GenerallyPETandPENsubstratesare   permeabletowatervaporsandoxy-gentoo.Therefore,theseflexiblesubstrateswillbecoatedwithflexiblebarrierfilms.Thebilayerencapsulation(parylene+BCB)fulfillsthecriteriaofflexibility.Therefore,thisbilayerencapsula-tionschemecanbeusedtoencapsulatethePETor   PENsubstratesforthefabricationof    flexibleelectronicdevices[40]. 4.Conclusion TheairstabilityofC 60  basedn-typeOFETswas   investigated.Inambientconditions,theunencapsulatedOFETsgive80%degra-dationin90min.To   increasetheair   stability;theOFETswereencapsulatedwithparyleneandparylene+   BCBencapsulationlay-ers.TheOFETsencapsulatedwitha   bilayershowbetterair   stabilityascomparedto   singlelayerencapsulation.Theenhancedairsta-bilitywithbilayerencapsulationcanbeattributedtothedecreaseinsurfaceroughnessduetoadditionalBCBlayer.Thesecondrea-sonforimprovementmay   bethesealingof    parylenethinfilmdefectsbytheBCBencapsulationlayers.Ourproposedencapsula-tionlayersaretransparentandflexible.Therefore,theseproposedencapsulationlayerscanbeusedtoencapsulatealltypesof    organicsemiconductorbasedelectronicdevices.Thesamebilayerencap-sulationcanbeappliedtoencapsulatetheplasticsubstratesforthefabricationofflexibledevices. References [1]C.J.Brabec,N.S.Sariciftci,J.C.Hummelen,Adv.Funct.Mater.11(2001)15.[2]A.Nigam,G.   Schwabegger,M.Ullah,R.Ahmed,I.I.   Fishchuk,A.Kadashchuk,C.Simbrunner,H.Sitter,M.Premaratne,V.R.Rao,   Appl.Phys.Lett.101(2012)083305.[3]T.W.Kelley,L.D.Boardman,T.D.Dunbar,D.V.Muyres,M.J.Pellerite,T.P.Smith, J.Phys.Chem.B107(2003)5877.[4]G.Schwabegger,MujeebUllah,M.Irimia-Vladu,M.Reisinge,Y.Kanbur,R.Ahmed,P.   Stadler,S.Bauer,N.S.Sariciftci,H.Sitter,Synth.Met.161(2011)2058.[5]R.Ahmed,M.   Sams,C.Simbrunner,U.Mujeeb,K.Rehman,G.Schwabegger,H.Sitter,T.Ostermann,Synth.Met.161(2012)2562.[6]X.Yu,J.Yu,W.Huang,L.   Zhang,H.Zeng,AIPAdv.2(2012)022113.[7]S.Dong,H.Zhang,L.   Yang,M.Bai,Y.Yao,H.Chen,L.   Gan,T.   Yang,H.Jiang,S.Hou,L.Wan,X.Guo,Adv.Mater.24   (2012)5576.[8]T.D.Anthopoulos,F.B.Kooistra,H.J.Wondergem,D.Kronholm,J.C.   Hummelen,D.M.deLeeuw,Adv.Mater.18(2006)1679.[9]T.D.Anthopoulos,G.C.Anyfantis,G.C.Papavassiliou,D.M.deLeeuw,Appl.Phys.Lett.90(2007)122105.[10]S.H.Ko,H.Pan,C.P.Grigoropoulos,C.K.Luscombeb,J.M.J.Fréchet,D.   Poulikakos,Appl.Phys.Lett.90(2007)141103.[11]   C.D.Dimitrakopoulos,P.R.L.Malenfant,Adv.Mater.14   (2002)99.[12]   K.Takimiya,H.   Ebata,K.Sakamoto,T.   Izawa,T.   Otsubo,Y.Kunugi,J.   Am.Chem.Soc.   128(2006)12604.[13]    J.Veres,S.Ogier,G.Lloyd,Chem.Mater.16(2004)4543.[14]   M.Heeney,C.Bailey,K.Genevicius,M.   Shkunov,D.Sparrowe,S.Tierney,I.McCulloch,J.Am.   Chem.Soc.127(2005)1078.[15]   B.S.Ong,Y.Wu,   P.Liu,   S.Gardner,J.Am.Chem.Soc.126(2004)3378.[16]    J.Zaumseil,H.Sirringhaus,Chem.Rev.107(2007)1296.[17]   E.A.Katz,A.J.Lovinger,J.Johnson,C.Kloc,T.   Siegrist,W.   Li,Y.-Y.Lin,A.   Doda-balapur,Nature404(2000)478.[18]   B.A.Jones,M.J.Ahrens,M.-H.Yoon,   A.   Facchetti,T.J.Marks,M.R.Wasielewski,Angew.Chem.Int.Ed.43   (2004)6363.[19]   Z.Bao,A.J.Lovinger,J.Brown,J.Am.Chem.Soc.120(1998)207.[20]H.E.Katz,J.Johnson,A.J.Lovinger,W.   Li,J.Am.   Chem.Soc.122(2000)7787.[21]   D.M.deLeeuw,M.M.J.Simenon,A.R.Brown,R.E.F.Einerhand,Synth.Met.87(1997)53.[22]   T.D.Anthopoulos,G.C.Anyfantis,G.C.Papavassiliou,D.M.deLeeuw,Appl.Phys.Lett.90(2007)122105.[23]   S.H.Kim,W.M.   Yoon,M.Jang,H.Yang,J.J.Park,C.E.Park,J.   Mater.Chem.22(2012)7731.[24]   Y.G.Seol,W.   Heo,J.S.Park,N.E.Lee,D.K.Lee,Y.J.Kim,J.   Electrochem.Soc.158(2011)H931.[25]   P.E.Burrows,V.   Bulovic,S.R.Forrest,L.S.Sapochak,D.M.Mccarty,M.E.Thomp-son,   Appl.Phys.Lett.65(1994)2922.[26]   D.Kolosov,D.S.English,V.   Bulovic,P.F.Barbara,S.R.Forrest,M.E.Thompson,J.Appl.   Phys.90(2001)3242.[27]   M.S.Weaver,L.A.Michalski,K.Rajan,M.A.   Rothman,J.A.Silvernail,J.J.Brown,P.E.Burrows,G.L.Graff,M.E.Gross,P.M.Martin,M.   Hall,E.Mast,C.Bonham,W.Bennett,   M.Zumhoff,Appl.Phys.Lett.81(2002)2929.[28]    J.S.Lewis,M.S.Weaver,IEEEJ.Sel.Top.QuantumElectron.10(2004)45.[29]   T.B.Harvye,S.Q.Shi,F.So,US   Patent5,757,126(1998).[30]T.B.Harvye,S.Q.Shi,F.So,US   Patent5,686,360(1997).[31]   Y.Leterrier,Prog.Mater.Sci.48(2003)1.[32]   A.S.D.Sobrinho,M.   Latreche,G.Czeremuszkin,J.E.Klemberg-Sapieha,M.R.Wertheimer,J.Vac.Sci.Technol.A16(1998)3190.[33]   A.B.Chwang,M.A.Rothman,S.Y.Mao,R.H.Hewitt,M.S.Weaver,J.A.Silvernail,K.   Rajan,M.Hack,J.J.Brown,X.Chu,L.   Moro,T.   Krajewski,N.   Rutherfor,Appl.Phys.Lett.83(2003)413.[34]   T.-N.Chen,D.-S.Wuu,C.-C.Wu,   C.-C.Chiang,Y.-P.Chen,R.-H.Horng,J.   Elec-trochem.Soc.153(2006)F244.[35]    J.D.Affinito,M.E.Gross,C.A.Coronado,G.L.Graff,E.N.Greenwell,P.M.Martin,ThinSolidFilms291(1996)63.[36]   L.Tsetseris,S.T.Pantelides,Phys.Rev.B82(2010)045201.[37]   A.G.Erlat,R.J.Spontak,R.P.Clarke,T.C.Robinson,P.D.Haaland,Y.Tropsha,N.G.Harvey,E.A.Vogler,J.Phys.Chem.B103(1999)6047.[38]   M.Benmalek,H.M.Dunlop,Surf.Coat.Technol.76(1995)821.[39]   R.Thyen,A.Weber,C.P.Klages,Surf.Coat.Technol.97(1997)26.[40]A.Nigam,G.Schwabegger,M.   Ullah,R.Ahmed,I.I.Fishchuk,A.   Kadashchuk,C.   Simbrunner,H.Sitter,M.   Premaratne,V.R.Rao,MRSProc.1501(2013)05,http://dx.doi.org/10.1557/opl.2013.121.
Search
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x