MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.Find the average velocity of the function over the given interval.
1)y
=
x2
+
3x, [1, 8]A)887B)212C)11D)121)2)y
=
9x3
+
5x2

8, [

2, 8]A)492B)12452C)615D)4982)3)y
=
2x, [2, 8]A)2B)13C)7D)

3103)4)y
=
3x

2 , [4, 7]A)

310B)7C)13D)24)5)y
=
4x2 , 0, 74A)13B)2C)

310D)75)6)y
=

3x2

x, [5, 6]A)12B)

2C)

16D)

346)7)h(t)
=
sin (3t), 0,
π
6A)

6
π
B)
π
6C)3
π
D)6
π
7)8)g(t)
=
4
+
tan t,

π
4 ,
π
4A)

32B)

4
π
C)4
π
D)08)1
Test Bank for Calculus for Scientists and Engineers Early Transcendentals 1st Edition by Briggs
Full Download: http://downloadlink.org/product/testbankforcalculusforscientistsandengineersearlytranscendentals1stediti
Full all chapters instant download please go to Solutions Manual, Test Bank site: downloadlink.org
Use the table to find the instantaneous velocity of y at the specified value of x.
9)x
=
1.xy00.20.40.60.81.01.21.400.020.080.180.320.50.720.98A)0.5B)2C)1D)1.59)10)x
=
1.xy00.20.40.60.81.01.21.400.010.040.090.160.250.360.49A)1.5B)2C)1D)0.510)11)x
=
1.xy00.20.40.60.81.01.21.400.120.481.081.9234.325.88A)8B)6C)2D)411)2
12)x
=
2.xy00.51.01.52.02.53.03.54.0103858707470583810A)0B)4C)8D)

812)13)x
=
1.xy0.9000.9900.9991.0001.0011.0101.100

0.05263

0.00503

0.00050.00000.00050.004980.04762A)0.5B)

0.5C)0D)113)
Find the slope of the curve for the given value of x.
14)y
=
x2
+
5x, x
=
4A)slope is 120B)slope is

39C)slope is

425D)slope is 1314)15)y
=
x2
+
11x

15, x
=
1A)slope is 120B)slope is

39C)slope is

425D)slope is 1315)16)y
=
x3

5x, x
=
1A)slope is

3B)slope is 1C)slope is

2D)slope is 316)17)y
=
x3

2x2
+
4, x
=
3A)slope is 1B)slope is

15C)slope is 15D)slope is 017)18)y
=
2

x3 , x
=

1A)slope is 0B)slope is 3C)slope is

3D)slope is

118)3
Solve the problem.
19)Given limx
→
0

f(x)
=
Ll , limx
→
0
+
f(x)
=
Lr , and Ll
≠
Lr , which of the following statements is true?I. limx
→
0f(x)
=
LlII. limx
→
0f(x)
=
LrIII. limx
→
0f(x) does not exist.A)noneB)IC)IIID)II19)20)Given limx
→
0

f(x)
=
Ll , limx
→
0
+
f(x)
=
Lr , and Ll
=
Lr , which of the following statements is false?I. limx
→
0f(x)
=
LlII. limx
→
0f(x)
=
LrIII. limx
→
0f(x) does not exist.A)IB)IIIC)IID)none20)21)If limx
→
0f(x)
=
L, which of the following expressions are true?I. limx
→
0

f(x) does not exist.II. limx
→
0
+
f(x) does not exist.III. limx
→
0

f(x)
=
LIV. limx
→
0
+
f(x)
=
LA)I and II onlyB)I and IV onlyC)III and IV onlyD)II and III only21)22)What conditions, when present, are sufficient to conclude that a function f(x) has a limit as xapproaches some value of a?A)Either the limit of f(x) as x
→
a from the left exists or the limit of f(x) as x
→
a from the rightexistsB)f(a) exists, the limit of f(x) as x
→
a from the left exists, and the limit of f(x) as x
→
a from theright exists.C)The limit of f(x) as x
→
a from the left exists, the limit of f(x) as x
→
a from the right exists, andat least one of these limits is the same as f(a).D)The limit of f(x) as x
→
a from the left exists, the limit of f(x) as x
→
a from the right exists, andthese two limits are the same.22)4
Use the graph to evaluate the limit.
23)limx
→

1f(x)
x6 5 4 3 2 1 1 2 3 4 5 6y11x6 5 4 3 2 1 1 2 3 4 5 6y1
1
A)34B)
∞
C)

1D)

3423)24)limx
→
0f(x)
x4 3 2 1 1 2 3 4y43211234x4 3 2 1 1
2 3 4y43211234
A)

2B)2C)0D)does not exist24)5