School Work

A Practical Field Study of Various Solar Cells on Their Performance in Malaysia

performance of solar cells in malaysia
of 8
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
  A practical field study of various solar cells on their performance in Malaysia Nowshad Amin a , * , Chin Wen Lung b , Kamaruzzaman Sopian b a Dept. of Electrical Electronic and System Engineering, National University of Malaysia, 43600 Bangi Selangor, Malaysia b Solar Energy Research Institute, National University of Malaysia, 43600 Bangi Selangor, Malaysia a r t i c l e i n f o  Article history: Available online 3 January 2009 Keywords: PV performanceSilicon solar cellCIS solar cellField test a b s t r a c t A practical field study has been carried out with the intention to analyze and compare the performanceof various types of commercially available solar panels under Malaysia’s weather. Four different types of solar panels, such as mono-crystalline silicon, multi-crystalline silicon, amorphous silicon and copper–indium–diselenide (CIS) solar panels are used for the practical field study. A number of performancerelated parameters have been collected using data logger over a period of three consecutive days in thehope that this would give some initial information on the real performance of different solar panels.Results show that mono-crystalline silicon and multi-crystalline silicon solar module perform betterwhen they are under hot sun, whereas the CIS and triple junction amorphous silicon solar panel performbetter when it is cloudy and has diffused sunshine. Furthermore, the efficiency of crystalline silicon solarpanel has been found to drop when the temperature rises higher. This phenomenon does not appear inthe CIS and amorphous silicon solar panels, which shows that the performance of CIS and amorphoussilicon solar cells are better in terms of power conversion efficiency and overall performance ratio. Betterperformance of thin film solar cells like amorphous silicon and CIS are observed from the initial results,which draws attention over the selection of solar panels and also may encourage the usage of these intropical weather like Malaysia.   2008 Elsevier Ltd. All rights reserved. 1. Introduction The earth receives about 1000 pWof energy from the sun everyyear.ThisamountisenoughtocovertheEarth’senergydemandforover 1000 times. Capturing sunlight and turning them into elec-tricity for daily usage is averygood idea, however the technologieshaveitsownlimitationsandproblemswhichmustbesolvedbeforetheycouldbeimplementedinlargescale.Sincethedevelopmentof earlyPVcells,theveryfirstphotovoltaicsystemhasbeenappliedinMalaysia in early 1980s. The applications of photovoltaic weremainly concentrated on stand-alone systems, especially for ruralelectrification program. The first pilot system was installed andcommissioned in 1998 by Malaysia’s National Power Company(known as Tenaga Nasional Berhad @ TNB) as a pilot project todeterminewhetherPVissuitabletobeusedinMalaysia.Uptodate,PV has gained a strong support to be implemented by thegovernment but support is less from the private sectors and users.This is due to the high capital cost to install the system and longpayback time from the photovoltaic system.The main objective of the study is to demonstrate the realperformance of commercially available solar cells with someinformation in their differences in power production underMalaysia’s real weather condition. It is well known that the effi-ciencyandoutputpowerofthesolarcellschangewithtemperatureand solar irradiance level [1–3]. From the acquired data on thevariation of performance among the solar cells, a recommendationcan be made on the usage of photovoltaic applications in Malaysiaand that can serve as guidance for future users who will be inter-ested to use it as an alternative energy source. 2. Methodology: parameter acquisition In order to calculate and understand the performance of a photovoltaic module, a few parameters which can be obtainedfrom the data logger is needed. These related parameters arecategorizedintomoduleparameterandenvironmentalparameters.  2.1. Module parameters There are four important parameters which must be noted inorder to calculate the quality of the photovoltaic module. Thisincludes the maximum voltage,  V  max , maximum current,  I  max ,short-circuit current,  I  sc , and open circuit voltage,  V  oc . *  Corresponding author. E-mail address: (N. Amin). Contents lists available at ScienceDirect Renewable Energy journal homepage: 0960-1481/$ – see front matter    2008 Elsevier Ltd. All rights reserved.doi:10.1016/j.renene.2008.12.005 Renewable Energy 34 (2009) 1939–1946  The maximum power, fill factor, energy conversion efficiencyandmoduleconversionefficiencyrevealthefactofhowwellasolarmodule works and is calculated by using the equation below: P  max  ¼  V  max    I  max Fill Factor ; FF   ¼ ð V  max    I  max Þ = ð V  oc    I  sc Þ Power Output Efficiency ; h  ¼ ð P  mea = P  max Þ  100Average Module Efficiency ; h  ¼  FF    ð V  ave    I  ave Þ = ð  A    G Þ Performance ratio  ¼ ð P  mea = P  max Þ = ð G = 1000 Þ where  A ¼ area of solar cell;  G ¼ solar irradiance.The average power of the module is calculated by multiplyingthe measured current and voltages. This value is not constant anddepends on many factors like solar irradiance and temperature of the module.The performance of each solar module cannot be obtained by just looking at the power output of the modules. Therefore thepower output efficiency which has been normalized to the ratingsof each module should be used to compare them. The output effi-ciency shows how much power is actually generated at a specifictime over the installed capacity of the module.The module efficiency is calculated by dividing the meanpoweroutput over the duration recorded over the power input from thesun. The power input from the sun is calculated by multiplying thesolar irradiance power with the total active area of the solarmodule. By this, the average module efficiency could be deter-mined. The value calculated is average value and might bedifferentfrom the on given in the data sheet.The performance ratio calculation is calculated by dividing thepower output ratio to the irradiance ratio. The values given in theStandard Test Condition is used in this calculation to make a faircomparison between each module. It also shows which types of solar cells are actually performing better than the others. 3. Results and discussion At first, the output power of each solar module was found toincrease steadilywith the solar irradiance. This can be seen in Fig.1where all solar modules show increment in output power withtime and peak at 12.30pm. The installation capacity of mono-crystalline silicon solar panel is higher than any other kinds, andthat’s why the output power shows the highest value beforecomparison with normalized values. CIS panel, in contrast, has thelowest Wp value. The data for 7.30pm could not be obtainedbecause of heavy rain.Fig. 2 shows the solar irradiance level of day 1. The irradiance at7.30amishigherthan8.30am,buttheoutputpowerismuchloweratthat time. This is due to the angle of irradiance and also the fixedposition of the solar modules. The solar irradiance peaks at noon,which corresponds to the peak output power in the solar modules.Heavy clouds and high wind speed at 2.30pm caused the outputpowertodropdrastically.ThemoduletemperaturegraphisshowninFig.3,itshowsthatallmoduletemperaturestaysabovetheambienttemperature for most of the time. This is due to the heat which isconverted from the sunlight whenphotovoltaic process takesplace.From Fig. 4, it can be seen that the CIS solar module high output efficiency in high and low light condition. However, this onlyhappens when the CIS module reaches certain temperature. Mono-crystallinesiliconsolarmodulehadshowngoodoutputefficiencyinhighandlowlightcondition.Theperformanceofamorphoussiliconand multi-crystalline silicon module are almost the same, withamorphous silicon leading a little in high and lowlight condition.In day 2, the power output in the morning was found to be verylow due to heavy clouds, which is followed by heavy rain for over2 h. This can be seen in Fig. 5. After the rain, the output powerquickly increased to the peak value at about 2.30pm. Mono-crys-tallinesilicon module hasthe highestoutputpoweras the installedcapacity is the highest. Due to the sudden rain at around 10.30 amand 11.30 am, no data could be obtained.Fig. 6 shows the solar irradiance of day 2. The solar irradiance inthe morningand afternoon is relativelylowand it peaks at 2.30pm. 01020304050607080    7 .   3  0  a  m   8 .   3  0  a  m   9 .   3  0  a  m  1  0 .   3  0  a  m  1  1 .   3  0  a  m  1   2 .   3  0  p  m  1 .   3  0  p  m   2 .   3  0  p  m   3 .   3  0  p  m  4 .   3  0  p  m   5 .   3  0  p  m  6 .   3  0  p  m   7 .   3  0  p  m Time    O  u   t  p  u   t   P  o  w  e  r   (   W   ) p-Sia-Sic-SiCIS Fig. 1.  Average power output hourly for day 1. 020040060080010001200    7 .   3  0  a  m   8 .   3  0  a  m   9 .   3  0  a  m  1  0 .   3  0  a  m  1  1 .   3  0  a  m  1   2 .   3  0  p  m  1 .   3  0  p  m   2 .   3  0  p  m   3 .   3  0  p  m  4 .   3  0  p  m   5 .   3  0  p  m  6 .   3  0  p  m   7 .   3  0  p  m Time    I  r  r  a   d   i  a  n  c  e   (   W   /  m   2   ) Fig. 2.  Solar irradiance vs time (day 1). N. Amin et al. / Renewable Energy 34 (2009) 1939–1946  1940  The temperature in the morning could not be obtained. This couldbe due to surrounding temperature which is lower than the digitalthermometer’s sensing ability. Therefore the graph as can be seenin Fig. 7 starts at 12.30pm. All solar module shows highertemperature compared to the ambient temperature although thesolar irradiance level was low. This is because the energy from thelight is converted to heat when it struck the surface of the solarmodule.The normalized output efficiency of each solar module can beseen in Fig. 8. Multi-crystalline silicon solar module has shownbetter output efficiency in day 2. The CIS solar module has alsoshown a better output efficiency compared to amorphous siliconsolar modulewhilethe mono-crystallinesilicon moduleshows lowoutput efficiency. This is due to the fact that mono-crystallinesilicon solar cell performs poorly in low light condition.In day 3, the data obtained is rather complete compared to firstand second day before.Ascanbeseen inFig. 9,the outputpowerof every solar module shows increment in output power almostproportion to the solar irradiance. Amorphous silicon solar moduleproduces more output power compared to the multi-crystallinesilicon module although the installed capacity is a little lower.Thesolarirradiancegraph forday3in Fig.10isalmostsimilar tothat obtained for a normal sunny day. A sudden increase of irradi-ance level at 3.30pm may have been caused bysome light cloudingbefore that. Fig. 11 shows the comparison of module temperatureand ambient temperature for day 2. The temperature of themodules changes unexpectedly in the afternoon and had gonedown near to ambient temperature. This phenomenon may be dueto the blowing wind, which creates a cooling effect to the modules.The cooling effects are dependant on the wind speed, windtemperature, and wind humidity. From the normalized outputefficiency graph in Fig. 12, it can be seen that mono-crystallinesilicon module is not performing well. The output efficiency of multi-crystalline silicon is found higher compared to the mono-crystalline silicon. On the other hand, as expected the outputefficiency of amorphous silicon is always lower than the CIS type. 4. Analysis for multi-crystalline silicon solar module Fig. 13 shows the output power of the multi-crystalline siliconsolarmodulewiththechangeofirradiancelevel.Itcanbeseenthatthe power output is higher as the irradiance level is high. Most of the data point lies in the bottom left of the graph as the weathercondition for all 3 days were cloudy.The temperature of the solar module increases with irradiancelevel. As the sun’s irradiance is higher, more energy is absorbed bythesolarmoduleandmoreheatwillbegenerated.Fig.14showstheoutput power of the multi-crystalline silicon solar module withmodule temperature. It can be seen that the output power is lesswhen the module temperature is high. 5. Analysis for mono-crystalline silicon solar module Fig. 15 shows the output power of the mono-crystalline siliconsolarmodulewiththechangeofirradiancelevel.Itcanbeseenthattheoutputpowerincreaseswithsolarirradiance.Theoutputpowerof mono-crystalline silicon solar module becomes highest whenthe solar irradiance level is around 1000 W/m 2 .Fig.16 shows the performance of mono-crystalline silicon solarwith module temperature. The output power was expected to dropas the module temperature reaches a high value. During the fieldstudy, the module temperature was lower than expected due tocloudy days. Further more, the module’s temperature is notexpected to go up very high in tropical climate. 020406080100120    7 .   3  0  a  m   8 .   3  0  a  m   9 .   3  0  a  m  1  0 .   3  0  a  m  1  1 .   3  0  a  m  1   2 .   3  0  p  m  1 .   3  0  p  m   2 .   3  0  p  m   3 .   3  0  p  m  4 .   3  0  p  m   5 .   3  0  p  m  6 .   3  0  p  m Time    E   f   f   i  c   i  e  n  c  y   (   %   )  p-Sia-Sic-SiCIS Fig. 4.  Normalized output efficiency vs time (day 1). 0102030405060    7 .   3  0  a  m   8 .   3  0  a  m   9 .   3  0  a  m  1  0 .   3  0  a  m  1  1 .   3  0  a  m  1   2 .   3  0  p  m  1 .   3  0  p  m   2 .   3  0  p  m   3 .   3  0  p  m  4 .   3  0  p  m   5 .   3  0  p  m  6 .   3  0  p  m   7 .   3  0  p  m Time    T  e  m  p  e  r  a   t  u  r  e   (   C   ) p-Si a-sic-Si CISambient Fig. 3.  Comparison of ambient temperature with module temperature (day 1). N. Amin et al. / Renewable Energy 34 (2009) 1939–1946   1941  6. Analysis for amorphous silicon solar module Fig. 17 shows the output power of amorphous silicon solarmodulewiththechangeofsolarirradiancelevel.Itcanbeseenthatthe power output of the solar module is high even though theirradiance level is low. This is because amorphous silicon solar cellshave good light absorption compared to the bulk silicon solar cells.In Fig. 18 the output power of the amorphous silicon solarmodulewithtemperaturecanbecompared.Theamorphoussiliconsolarmoduledoesnotshowanydropinoutputpoweralthoughthemoduletemperatureishigh.Thisshowsthattheamorphoussiliconsolar cells can withstand the heat better compared to the bulksilicon solarcells. Amorphous silicon solar module’s temperature isalsofoundtobelowerduetothelargermodulesize.Largermodulesize makes the heat dissipation better and thus the solar module iscooler that the other solar module. 7. Analysis for CIS solar module Fig.19 shows the output power of the CIS solar module with thechange of solar irradiance level. CIS solar module has shown thehigh poweroutput althoughthe solar irradiance level is low. This isdue to the fact that CIS solar cells have good light absorptionproperties likeamorphoussilicon solarcells. Asthe irradiance levelincreases, the output power is almost up to the rated value. In thefield study, the output power of the CIS solar module had almostreached the maximum power output in some cases.The output power changes with module temperature of the CISsolarmodule,whichcanbeseeninFig.20.ThefigureisverysimilartoFig.18oftheamorphoussiliconmodule.TheoutputpoweroftheCIS solar module is almost un-affected by the increasing moduletemperature.Infact,thepoweroutputisatpeakswhenthemoduletemperature is the highest. 8. Module efficiency analysis The module efficiency is shown in Fig. 21 is calculated from thedata obtained from the field study. The values are much lower if compared to the expected value under the Standard Test Condi-tions. This is because the module efficiency value given under theStandard Test Conditions is the maximum efficiency of the moduleand is being calculated for only one data. Under the field condition,the varying solar irradiance and temperature affects the perfor-mance and efficiency of the solar cells. Further more, the values 0102030405060    7 .   3  0  a  m   8 .   3  0  a  m   9 .   3  0  a  m  1  0 .   3  0  a  m  1  1 .   3  0  a  m  1   2 .   3  0  p  m  1 .   3  0  p  m   2 .   3  0  p  m   3 .   3  0  p  m  4 .   3  0  p  m   5 .   3  0  p  m  6 .   3  0  p  m   7 .   3  0  p  m Time    O  u   t  p  u   t   P  o  w  e  r   (   W   ) p-Sia-Sic-SiCIS Fig. 5.  Average power output hourly for day 2. 020040060080010001200    7 .   3  0  a  m   8 .   3  0  a  m   9 .   3  0  a  m  1  0 .   3  0  a  m  1  1 .   3  0  a  m  1   2 .   3  0  p  m  1 .   3  0  p  m   2 .   3  0  p  m   3 .   3  0  p  m  4 .   3  0  p  m   5 .   3  0  p  m  6 .   3  0  p  m   7 .   3  0  p  m Time    I  r  r  a   d   i  a  n  c  e   (  w   /  m   2   ) Fig. 6.  Solar irradiance vs time (day 2). 01020304050    7 .   3  0  a  m   8 .   3  0  a  m   9 .   3  0  a  m  1  0 .   3  0  a  m  1  1 .   3  0  a  m  1   2 .   3  0  p  m  1 .   3  0  p  m   2 .   3  0  p  m   3 .   3  0  p  m  4 .   3  0  p  m   5 .   3  0  p  m  6 .   3  0  p  m   7 .   3  0  p  m Time    T  e  m  p  e  r  a   t  u  r  e   (   C   ) p-Si a-Sic-Si CISambient Fig. 7.  Comparison of ambient temperature with module temperature (day 2). N. Amin et al. / Renewable Energy 34 (2009) 1939–1946  1942
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks