Novels

An Introduction to Operator Algebras

Description
Recall that an algebra is a ring which is also a vector space under addition. An algebra is unital if it has a multiplicative identity, which we denote by 1 (or 1 A if A is the algebra and we wish to clarify that this is the identity for A). Unless
Categories
Published
of 96
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  ❇❛✐❝❞❡✜♥✐✐♦♥  ◮ ❘❡❝❛❧❧❤❛❛♥  ❛❧❣❡❜❛  ✐❛✐♥❣✇❤✐❝❤✐❛❧♦❛✈❡❝♦♣❛❝❡✉♥❞❡❛❞❞✐✐♦♥✳❆♥❛❧❣❡❜❛✐  ✉♥✐❛❧  ✐❢✐❤❛❛♠✉❧✐♣❧✐❝❛✐✈❡✐❞❡♥✐②✱✇❤✐❝❤✇❡❞❡♥♦❡❜②  1 ✭♦  1  A  ✐❢   A  ✐❤❡❛❧❣❡❜❛❛♥❞✇❡✇✐❤♦❝❧❛✐❢②❤❛❤✐✐❤❡✐❞❡♥✐②❢♦   A  ✮✳ ❯♥❧❡♦❤❡✇✐❡❛❡❞✱❛❧❧♦❢♦✉❛❧❣❡❜❛❛❡❝♦♠♣❧❡①✦  ◮ ❆  ❇❛♥❛❝❤❛❧❣❡❜❛  ✐❛♥❛❧❣❡❜❛✇❤✐❝❤✐❛❇❛♥❛❝❤♣❛❝❡✳❲❡❛✉♠❡❤❛❤❡ ♥♦♠✐✉❜♠✉❧✐♣❧✐❝❛✐✈❡✳ ◮ ❲❡✇✐❡   A  ♯ ❢♦❤❡  ❛❧❣❡❜❛✐❝❞✉❛❧  ♦❢❛♥❛❧❣❡❜❛   A  ❀❤❛✐✱❤❡❝♦❧❧❡❝✐♦♥♦❢❛❧❧❧✐♥❡❛❢✉♥❝✐♦♥❛❧❀❛♥❞✇✐❡   A  ∗ ❢♦❤❡❝♦♥✐♥✉♦✉❧✐♥❡❛❢✉♥❝✐♦♥❛❧✇❤❡♥   A  ✐ ❛♥♦♠❡❞❛❧❣❡❜❛✳◆♦❡❤❛   A  ∗ ✐❛❇❛♥❛❝❤❛❧❣❡❜❛✱❛♥❞✇❡❝❛♥✐♠✐❧❛❧② ❞❡✜♥❡   A  ∗∗ ✱❡❝✳  ❇❛✐❝❞❡✜♥✐✐♦♥✱❝♦♥✐♥✉❡❞  ◮ ❆♥♦♥③❡♦♠✉❧✐♣❧✐❝❛✐✈❡❧✐♥❡❛❢✉♥❝✐♦♥❛❧  χ ♦♥❛♥❛❧❣❡❜❛   A  ✐❝❛❧❧❡❞❛  ❝❤❛❛❝❡  ✳❲❡✇✐❡   X  (  A  ) ❢♦❤❡❡♦❢❝❤❛❛❝❡♦❢   A  ✳ ⋆ ❚❤✐❡♠❛②❜❡ ❡♠♣②✦  ✭❝♦♥✐❞❡  M  2 (  ) ✮✳ ◮ ❆♥  ✭❛❧❣❡❜❛✮❤♦♠♦♠♦♣❤✐♠   ϕ :  A  → B  ✱  A  , B  ❛❧❣❡❜❛✱✐❛❧✐♥❡❛♠❛♣✉❝❤❤❛  ϕ ( ab  ) = ϕ ( a  ) ϕ ( b  ) ✭❤❛✐✱  ϕ ♣❡❡✈❡❛❧❣❡❜❛✉❝✉❡✮✳■❢   A  , B  ❛❡❜♦❤ ✉♥✐❛❧✱❤❡♥✇❡❛②❤❛  ϕ ✐  ✉♥✐❛❧  ✐❢   ϕ ( 1  A  ) = 1 B  ✳ ◮ ❆  ❡♣❡❡♥❛✐♦♥  ♦❢❛❇❛♥❛❝❤❛❧❣❡❜❛   A  ✐❛♥❛❧❣❡❜❛❤♦♠♦♠♦♣❤✐♠❢♦♠   A  ✐♥♦    (   ) ✱❤❡❜♦✉♥❞❡❞❧✐♥❡❛♦♣❡❛♦♦♥❛❍✐❧❜❡♣❛❝❡     ✳❚❤❡  ❞✐♠❡♥✐♦♥  ♦❢❛❡♣❡❡♥❛✐♦♥✐❤❡❞✐♠❡♥✐♦♥♦❢    ✳❆♥✐♥❥❡❝✐✈❡ ❡♣❡❡♥❛✐♦♥✐❛✐❞♦❜❡  ❢❛✐❤❢✉❧  ✳❈❤❛❛❝❡❛❡❥✉  1 ❞✐♠❡♥✐♦♥❛❧❡♣❡❡♥❛✐♦♥✳  ❇❛✐❝❞❡✜♥✐✐♦♥✱❝♦♥✐♥✉❡❞  ◮ ❆  ❧❡❢✐❞❡❛❧   I  ♦❢❛♥❛❧❣❡❜❛   A  ✐❛✉❜❡♦❢   A  ✇❤✐❝❤✐❛✉❜❣♦✉♣✉♥❞❡ ❛❞❞✐✐♦♥✱❛♥❞❤❛✈✐♥❣❤❡♣♦♣❡②❤❛  ax  ∈ I  ✇❤❡♥❡✈❡   a  ∈  A  ❛♥❞   x  ∈ I  ✳■✐❛  ✐❣❤✐❞❡❛❧  ✐❢✐♥❡❛❞  xa  ∈ I  ✱❛♥❞❛  ✇♦✲✐❞❡❞✐❞❡❛❧  ✭♦✐♠♣❧②  ✐❞❡❛❧  ✮✐❢✐✐❜♦❤ ❛❧❡❢❛♥❞✐❣❤✐❞❡❛❧✳■❞❡❛❧❛❡❛✉♠❡❞♦❜❡♥♦♥✐✈✐❛❧✭✐❡✱♥♦  { 0 } ♦   A  ✮✳ ◮ ❆  ♠❛①✐♠❛❧✐❞❡❛❧  ✐❛♥✐❞❡❛❧✇❤✐❝❤✐♥♦♣♦♣❡❧②❝♦♥❛✐♥❡❞✐♥❛♥♦❤❡✐❞❡❛❧✳❚❤❡❡①✐❡♥❝❡♦❢♠❛①✐♠❛❧❧❡❢♦✐❣❤✐❞❡❛❧✐  ⋆ ❛✐♠♣❧❡❛♣♣❧✐❝❛✐♦♥♦❢❩♦♥✬ ❧❡♠♠❛✳❚❤❡❡♦❢♠❛①✐♠❛❧✭✇♦✲✐❞❡❞✮✐❞❡❛❧♦❢❛♥❛❧❣❡❜❛   A  ✐❞❡♥♦❡❞❜②  M  (  A  ) ✭❤✐♠❛②❜❡❡♠♣②✦✮✳ ◮ ❚❤❡  ❛❞✐❝❛❧  ❛❞   (  A  ) ♦❢❛♥❛❧❣❡❜❛   A  ✐❤❡✐♥❡❡❝✐♦♥♦❢❛❧❧♠❛①✐♠❛❧❧❡❢ ✭❡✉✐✈❛❧❡♥❧②✱❛❧❧♠❛①✐♠❛❧✐❣❤✮✐❞❡❛❧✳■❢❤❡❛❞✐❝❛❧✐  { 0 } ✱❤❡❛❧❣❡❜❛✐❛✐❞ ♦❜❡  ✐♠♣❧❡  ✳ ◮ ❆❜❛✐❝❡✉❧✐♥❤❡❤❡♦②♦❢❝♦♠♠✉❛✐✈❡✉♥✐❛❧❇❛♥❛❝❤❛❧❣❡❜❛✐❤❛❢♦ ✉❝❤❛♥❛❧❣❡❜❛   A  ✱❤❡❡   X  (  A  ) ❛♥❞   M  (  A  ) ❛❡♥♦♥❡♠♣②✱❛♥❞✐♥❢❛❝✱❤❡❡✐ ❛♦♥❡♦♦♥❡❝♦❡♣♦♥❞❡♥❝❡❜❡✇❡❡♥❤❡✇♦✭❤❡♠❛①✐♠❛❧✐❞❡❛❧❜❡✐♥❣ ❦❡♥❡❧♦❢❝❤❛❛❝❡✮✳  ❇❛✐❝❞❡✜♥✐✐♦♥✱❝♦♥✐♥✉❡❞  ◮ ■❢   A  ✐♥♦❛✉♥✐❛❧❛❧❣❡❜❛✱✇❡❝❛♥  ✉♥✐✐③❡  ✐✳❚❤❡✉♥✐✐③❛✐♦♥   A  1  =  A  ×  ❤❛  ( a  , α ) + ( b  , β ) = ( a  + b  , α + β ) , β ( a  , α ) = ( β a  , βα ) , ( a  , α )( b  , β ) = ( ab  + β a  + α b  , αβ ) , ❛♥❞   ( a  , α )  =  a   + | α | , ❛♥❞✉♥✐❡✉❛❧♦  ( 0,1 ) ✳■❝♦♥❛✐♥   A  ✐♦♠❡✐❝❛❧❧②❛❛♥✐❞❡❛❧✳❲❤❡♥   A  ✐ ❝♦♠♠✉❛✐✈❡✱♦✐   A  1 ✳  ❚♦♣♦❧♦❣✐❡  ◮ ❙❡✈❡❛❧❞✐✛❡❡♥♦♣♦❧♦❣✐❡✇✐❧❧❜❡♦❢✐♠♣♦❛♥❝❡♦✉✳ ◮ ❚❤❡❡✐❤❡  ♥♦♠♦♣♦❧♦❣②  ♦♥❛♥♦♠❡❞❛❧❣❡❜❛✳❇②❞❡✜♥✐✐♦♥✱❛❇❛♥❛❝❤ ❛❧❣❡❜❛✐❝♦♠♣❧❡❡✐♥❤✐♥♦♠✳ ◮ ❚❤❡❡✐❤❡  ✇❡❛❦♦♣♦❧♦❣②  ✱✇❤✐❝❤✐❞❡✜♥❡❞❛❤❡✇❡❛❦❡♦♣♦❧♦❣②♦♥   A  ✉❝❤❤❛❤❡❧✐♥❡❛❢✉♥❝✐♦♥❛❧✐♥   A  ∗ ❛❡❝♦♥✐♥✉♦✉✳ ◮ ❘❡❝❛❧❧❤❛❤❡❡✐❛♥✐♦♠❡✐❝❡♠❜❡❞❞✐♥❣♦❢❛❇❛♥❛❝❤❛❧❣❡❜❛   A  ✐♥♦   A  ∗∗ ✳❚❤❡  ✇❡❛❦✲  ∗ ♦♣♦❧♦❣②  ✐❤❡✇❡❛❦❡♦♣♦❧♦❣②♦♥   A  ∗ ✉❝❤❤❛❤❡❡❧❡♠❡♥♦❢   A  ✱✈✐❡✇❡❞❛❧✐♥❡❛❢✉♥❝✐♦♥❛❧♦♥   A  ∗ ✱❛❡❝♦♥✐♥✉♦✉✳ ◮ ❚❤❡✐♠♣♦❛♥❝❡♦❢❤❡✇❡❛❦✲   ∗ ♦♣♦❧♦❣②❧✐❡✐♥❤❡❢❛❝❤❛❤❡❝❤❛❛❝❡♦❢   A  ❢♦♠❛❝❧♦❡❞✉❜❡♦❢❤❡✉♥✐❜❛❧❧♦❢   A  ∗ ✳❇②❆❧❛♦❣❧✉✬❤❡♦❡♠✱✐❢♦❧❧♦✇ ❤❛   X  (  A  ) ✭♦   M  (  A  ) ✐❞❡♥✐✜❡❞✇✐❤   X  (  A  ) ✮✐❡❧❛✐✈❡❧②✇❡❛❦✲   ∗ ❝♦♠♣❛❝✳
Search
Tags
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks