# anschp13

Description
problemas
Categories
Published

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
Chapter 13. ElasticityPhysics, 6 th  Edition Chapter 13. Elasticity   Elastic Properties of Matter 13-1. When a mass of 500 g is hung from a spring, the spring stretches 3 cm. What is the spring constant ! m = 0.500   g#  x = 0.03 m,  F = W = mg \$  F = -kx; % &0.50 g'&(.) m*s'0.03 m  F k  x = = ; + 163 *m13-%. What ill e the increase in stretch for the spring of Prolem 13-1 if an additional 500-g mass is hung lo the first !  F = W = mg   \$ % &0.500 g'&(.) m*s'163 *m  F  xk  ∆∆ = = # ∆ / + 3.00 cm13-3. he spring constant for a certain spring is found to e 3000 *m. What force is reuired tocompress the spring for a distance of 5 cm  F = kx = &3000 *m'&0.05 m'#  F = 150 13-2.  6-in. spring has a 2-l eight hung from one end, causing the ne length to e 6.5 in. What is the spring constant What is the strain ! ∆ / + 6.5 in. 4 6.0 in. + 0.50 in. \$&2 l'#0.5 in.  F k  x = =  k = ).00 l*in.0.50 in.6.00 in.  LStrain L ∆= = # Strain = 0.0)3313-5.  coil spring 1% cm long is used to support a 1.)- g mass producing a strain of 0.10. o far did the spring stretch What is the spring constant # &'&1%.0 cm'&0.10' o  LStrain L L strain L ∆= ∆ = = # ∆  + 1.%0 cm % &1.) g'&(.) m*s'#0.01%0 m  F k  L ∆= =∆  k = 1270 *m172  Chapter 13. ElasticityPhysics, 6 th  Edition13-6. 8or the coil of Prolem 13-5, hat total mass should e hung if an elongation of 2 cm is desired  F = mg = kx; % &1270 *m'&0.02 m'(.)0 m*s kxm g  = = ; m = 6.00 g Young’s Modulus 13-7.  60- g eight is suspended y means of a cale ha9ing a diameter of ( mm. What is the stress ! 8 + mg + &60 g'&(.) m*s % '# 8 + 5)) # : + 0.00( m \$ %%-5% &0.00( m'6.36 / 10 m22  D A  π π  = = = # % 5)) 0.00707 m  F Stress A = = # Stress + (.%2 / 10 6  Pa13-).  50-cm length of ire is stretched to a ne length of 50.01 cm. What is the strain ∆  + 50.01 4 50 cm# 0.01 cm50 cm  LStrain L ∆= = # Strain = %.00 / 10 -2 13-(.  1%-m rod recei9es a compressional strain of -0.0002. What is the ne length of the rod# &'&1%.0 m'&-0.0002' o  LStrainLLstrain L ∆= ∆ = = # ∆  + -0.002)0 m  L = L o  + ∆  L = 1%.000 m 4 0.002)0 m ; L + 11.((5 m13-10. ;oung<s modulus for a certain rod is 2 / 10 11  Pa. What strain ill e produced y a tensile stress of 2%0 =pa 611 2%0 / 10Pa# 2 / 10Pa StressStressYStrainStrainY  = = = Strain = 1.05 / 10 -3 175  Chapter 13. ElasticityPhysics, 6 th  Edition13-11.  500- g mass is hung from the end of a %-m length of metal ire 1 mm in diameter. >f the ire stretches y 1.20 cm, hat are the stress and strain What is ;oung<s modulus for this metal !  F = mg   + &500 g'&(.) m*s % '#  F   + 2(00 #  D  + 0.001 m# ∆  L  + 0.012 m \$ %%-7% &0.001 m'7.)5 / 10 m22  D A  π π  = = =   -7% 2(00 7.)5 / 10 m  F Stress A = = # Stress + 6.%2 / 10 (  Pa 0 0.012 m%.00 m  LStrain L ∆= = # Strain = 7.00 / 10 -3(-3 6.%2 / 10Pa7 / 10 StressY Strain = = # ; + ).(1 / 10 11  Pa 13-1%.  16 ft steel girder ith a cross-sectional area of 10 in. %  supports a compressional load of %0 tons. What is the decrease in length of the girder ! ; + 30 / 10 6  Pa# 1 ton + %000 l \$ 6%% &20,000 l'&16 ft'&1% in*ft'# &30 / 10l*in.'&10 in.'  FLFLYL ALYA −= ∆ = =∆ # ∆  L = - 0.0%56 in.13-13. o much ill a 60 cm length of rass ire, 1.% mm in diameter, elongate hen a 3- g mass is hung from an end ! Y   + )(.6 / 10 (  Pa#  D  + 0.001% m ; L o  + 0.60 m# m  + 3 g \$ %%-6% &0.001% m'1.13 / 10 m22  D A  π π  = = =  # 8 + &3 g'&(.) m*s % ' + %(.2 # #  FLY  AL =∆ (-6% &%(.2 '&0.60 m'&)(.6 / 10'&1.13 / 10m'  FL LYA ∆ = = # ∆  L = 1.72 / 10 -2  m176  Chapter 13. ElasticityPhysics, 6 th  Edition?13-12.  ire of cross-section 2 mm %  is stretched 0.1 mm y a certain eight. o far ill a ire of the same material and length stretch if is cross-sectional area is ) mm %  and the same eight is attached 11%%  FLFLY  ALAL = =∆ ∆ #  A 1 ∆  L 1  = A 2 ∆  L 2 %11%%% &2 mm'&0.10 mm'&) mm'  AL L A ∆∆ = = ; ∆  %  + 0.0500 mm13-15.  ire 15 ft long and 0.1 in. %  in cross-section is found to increase its length y 0.01 ft under a tension of %000 l. What is ;oung<s modulus for this ire Can you identify the material % &%000 l'&15 ft'#&0.10 in.'&0.01 ft'  FLY  AL = =∆   Y + 30 / 10 6  l*in. %    , stee  Shear Modulus 13-16.  shearing force of 20,000  is applied to the top of a cue that is 30 cm on a side. Whatis the shearing stress !  A = &0.30 m'&0.30 m' + 0.0( m %  \$ % 20,000 0.0( m  F Stress A = = # Stress = 2.22 / 10 5  Pa?13-17. >f the cue in Prolem 13-16 is made of copper, hat ill e the lateral displacement of the upper surface of the cue 5( **2.22 / 10Pa# 2%.3 / 10Pa  FAFAS S  φ φ  = = = # φ  + 1.05 / 10 -5  rad# &0.30 m'& ! !   φ φ  = = = 1.05 / 10 -5  rad'# !   + 3.15 µ m177

Jul 23, 2017

#### Pathways to ICAEW Membership Programme for ACCA Members

Jul 23, 2017
Search
Similar documents
Tags