# Assign 1

Description
stochastic calculus
Categories
Published

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
Assignment 1 Stochastic Calculus 2012  † email: alex.kreinin@ca.ibm.com August 23, 2012 Problem 0.1  What is   P ( A )  if   A  is independent of itself?  Problem 0.2  Denote by   ρ  the correlation coeﬃcient of the random variables   ξ   and   η . Prove that if   ρ  = − 1  then there exist real numbers   a <  0  and   b  such that  ξ   =  aη  +  b. Problem 0.3  Let r.v.  ξ   take only integer values with probabilities  P ( ξ   =  n ) =  cn 2 , n  = 1 , 2 ,.... Find the constant   c . Does   E ξ   exist ?  Problem 0.4  Let   ξ   and   η  be random variables taking two diﬀerent values,  a  and   b . Assume that   E [ ξ  · η ] =  E [ ξ  ] · E [ η ] .Is it true that   ξ   and   η  are independent?  1  Problem 0.5 (Frequently used distributions: Binomial)  Let   0  ≤  p  ≤  1 . Consider a random variable,  ξ  , such that  P ( ξ   =  k ) =  nk   p k (1 −  p ) n − k , k  = 0 , 1 ,...,n. Find   E [ ξ  ] ,  E [ z  ξ ] ,  σ 2 ( ξ  ) . Problem 0.6 (Frequently used distributions: Geometrical)  Let   0  < p  ≤  1 . Con-sider a random variable,  η , such that  P ( η  =  k ) =  p (1 −  p ) k , k  = 1 ,...,n. Find   E [ η ] ,  E [ z  η ] ,  σ 2 ( η ) .Prove that   P ( η > i  +  j | η > i ) =  P ( η > j ) . Problem 0.7 (Frequently used distributions: Exponential)  Let   λ >  0 . Consider a random variable,  ξ  , such that  P ( ξ   ≤ x ) = 1 − exp( − λx ) , x ≥ 0 . Find   E [ ξ  ] ,  ϕ ( s ) =  E [exp( isξ  )] ,  σ 2 ( ξ  ) .Find distribution of the sum, Y  n  = n  k =1 X  k , where   X  k  form a sequence of independent random variables having the exponential distribu-tion,  Exp( λ ) . Problem 0.8  Find  P   min 1 ≤ k ≤ n ξ  k  > x  , where   ξ  k  ∼ Exp( λ ) .Find also P   max 1 ≤ k ≤ n ξ  k  ≤ x  . 2  Problem 0.9 (Convergence in distribution)  Consider a r.v.  ξ  n  = max 1 ≤ k ≤ n  X  k , where  X  k  ∼ Exp(1) . Let   η n  =  ξ n ln n . What is the limit of   η n  as   n →∞ ?  Problem 0.10  Let   ξ   and   η  be independent r.v. with   Exp( λ )  distribution. Find distribution of  β   = | η − ξ  | . Problem 0.11  Prove that  P ( | X   +  Y   | > t ) ≤ P ( | X  | > t/ 2) + P ( | Y   | > t/ 2) . Problem 0.12  Let  ϕ ( x ) = 1 √  2 πe − x 22 and  Φ( x ) =    x −∞ ϕ ( t )d t. Prove that   Φ( x )  is, indeed, cdf of a random variable. Problem 0.13  Find  P ( αX   +  βY   ≤ 3) , where   X   and   Y   are independent Normally distributed   cN  (0 , 1) -random variables and   α  and  β   are real numbers. Problem 0.14 (Cauchy distribution)  Suppose   X   = tan( ξ  ) , where   ξ   is uniformly dis-tributed on   − π 2 ,  π 2  . Find distribution of   X  . Prove that pdf of   X   is  f  X  ( x ) = 1 π (1 +  x 2 ) . Problem 0.15 (Rayleigh distribution)  Let   σ >  0 . Consider a random variable,  ξ  , such that  P ( ξ   ≤ x ) = 1 − exp  −  x 2 2 σ 2  , x >  0 . Find   E [ ξ  ] ,  Var( ξ  ) . 3  Let   X   and   Y   be independent random variables with   N  (0 ,σ 2 )  distribution. Find distribution of the random variable  Z   = √  X  2 +  Y   2 . Problem 0.16  Let   ξ   and   η  be independent uniformly distributed random variables, P ( ξ   ≤ x ) =  P ( η  ≤ x ) =  x, x >  0 . Find distribution of the r.v.  ξ  · η . Problem 0.17 (Integration by parts)  Prove that  E [ X  ] =    ∞ 0 (1 − F  X  ( x )d x −    0 −∞ F  X  ( x )d x whenever at least one of the integrals is ﬁnite. Problem 0.18  Let   X  1 ,X  2 ,...  be identically distributed nonnegative r.v. with   E X  1  <  ∞ .Prove that  X  n n  → 0  with probability   1  . Problem 0.19  Prove that the function   cos t 2 is not a characteristic function. Problem 0.20  Let   X   be a uniformly distributed random variable on the interval   [ a, b ] . Find  E e itX  . Problem 0.21  Let   ϕ k ( t )  be the characteristic function of a random variable   X  k ,  ( k  =1 , 2 ,... ) . Consider a set of positive real numbers   p 1 ,  p 2 ,  ... . Take a function   f  ( t ) = ∞  k =1  p k ϕ k ( t ) . Find conditions on   p n  such that   f   is a characteristic function. Problem 0.22  Consider a log-normal portfolio. The initial value of the portfolio is   V  0  =  S  0 .The value of the portfolio at time   t  is  V  t  =  S  0 · e ( β  − 12 σ 2 ) t + σ √  tξ , t ≥ 0 , 4

Jul 23, 2017

#### Nymphs

Jul 23, 2017
Search
Similar documents

View more...
Tags

Related Search