# Continuous Beam Analysis

Description
Continuous Beam Analysis
Categories
Published

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
Input Continuous Beam Analysis Analysis of a continuous beams or a continuous frame subject to distribut Length 20.0030.0050.0030.00 Theta 0.000.000.000.00  Area 1.002.002.002.00 I 8.333E-021.667E-011.667E-011.667E-01 E 20000000200000002000000020000000Applied Loads For distributed loads specify position of the start or the load, the load intensity at the start For Point loads and moments specify the position and magnitudePositions and load lengths are measured along the beam axisDistributed and point load direction is either X (horizontal) or Y (vertical)Beam NoStart Load/m start Load/m end Load Length1 100-2020 2 20-30-3030 3 30-30-3050 4 30 5 30 6 40-30-3030 7 50-20-2020 89101112Enter 1 under End Fixity for restrained freedoms. End Actions and End Freedom numbe Support No FX FY M FX1 11  02 1  23 1  44 1  65 1  86 1  101 2 3k_1 EA/L 1000000 1333333.333 800000k_2 12EI/L^3 2500 1481.481481 320End Fixity Distributed LoadsPage 1  Inputk_3 EI/L 83333.3333 111111.1111 66666.66667k_4 6EI/L^2 25000 22222.22222 8000c Cos( θ ) =(X2-X1)/L 1.0000 1.0000 1.0000s Sin( θ ) =(Y2-Y1)/L 0.0000 0 0 Stiffness matrix coefficients; Beam No 1 2 3 4 5 c 2 .k_1 + s 2 .k_2 s.c.(k_1 - k_2) -s.k_4 -(c 2 .k_1 + s 2 .k_2) s.c.(-k_1 + k_2) 2  s 2 .k_1 + c 2 .k_2 c.k_4 s.c.(-k_1 + k_2) -(s 2 .k_1 + c 2 .k_2) 3  4k_3 s.k_4 -c.k_4 4  Symmetrical c 2 .k_1 + s 2 .k_2 s.c.(k_1 - k_2) 5  s 2 .k_1 + c 2 .k_2 6 Beam Stiffness matrix; Beam No:  51 2 3 4 51  1.00E+06 0.00E+00 0.00E+00 -1.00E+06 0.00E+00 2  0.00E+00 2.50E+03 2.50E+04 0.00E+00 -2.50E+03 3  0.00E+00 2.50E+04 3.33E+05 0.00E+00 -2.50E+04 4  -1.00E+06 0.00E+00 0.00E+00 1.00E+06 0.00E+00 5  0.00E+00 -2.50E+03 -2.50E+04 0.00E+00 2.50E+03 6  0.00E+00 2.50E+04 1.67E+05 0.00E+00 -2.50E+04 Deflection  Applied Force  Nett Force Reaction FX1 0.0000000 0.0 0.0 0.0FY1 0.0000000 -60.0 -6.3 53.7M1 -0.0013463 -266.7 -266.7 0.0FX2 0.0000000 0.0 0.0 0.0FY2 0.0000000 -590.0 -216.9 373.1M2 0.0010926 -1850.0 -1850.0 0.0FX3 0.0000000 0.0 0.0 0.0FY3 0.0000000 -1366.5 227.1 1593.6M3 -0.0111392 -6129.0 -6129.0 0.0FX4 0.0000000 0.0 0.0 0.0FY4 0.0000000 -1393.5 211.8 1605.2M4 0.0116211 6352.3 6352.3 0.0FX5 0.0000000 0.0 0.0 0.0FY5 0.0000000 -650.0 -189.6 460.4M5 -0.0019188 1583.3 1583.3 0.0FX6 0.0000000 0.0 0.0 0.0Page 2  InputFY6 0.0000000 -200.0 -26.0 174.0M6 0.0029594 666.7 666.7 0.0FX7FY7M7Page 3  Input  d loads, point loads and moments Numbeams 20.00  m 5 0.00  degrees Angle of beam to X axis 1.00  m2 Cross Sectional Area 8.333E-02  m4 2nd Moment of Area 20000000  kPa Young's Modulus and end, and the load lengthDirection X/Y Position Load Direction X/Y Position Moment FX1  Y  0.00  Y  0.00 y25-120Y  0.00  Y26.25-120Y  0.00  Y27.5-120Y  0.00  Y  0.00 y  s are calculated by the spreadsheetFY M0 10 30 50 70 90 114 5 6 Current Beam1333333.333 1000000 10000001481.481481 2500 2500MomentsEnd FreedomsPointPage 4

Jul 23, 2017

#### PsychExchange.co.uk Shared Resource

Jul 23, 2017
Search
Similar documents

View more...
Tags

Related Search