Documents

Jurnal 1.pdf

Description
International Journal of Greenhouse Gas Control 5 (2011) 1614–1623 Contents lists available at SciVerse ScienceDirect International Journal of Greenhouse Gas Control journal homepage: www.elsevier.com/locate/ijggc Historical variation in the capital costs of natural gas, carbon dioxide and hydrogen pipelines and implications for future infrastructure Koen Schoots a,∗ , Rodrigo Rivera-Tinoco a , Geert Verbong b , Bob van der Zwaan a,c,d a Energy research Center of the Netherlands (ECN), Polic
Categories
Published
of 10
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  InternationalJournalofGreenhouseGasControl5(2011)1614–1623 ContentslistsavailableatSciVerseScienceDirect International    Journal   of    Greenhouse   Gas   Control  journalhomepage:www.elsevier.com/locate/ijggc Historical   variation   in   the   capital   costs   of    natural   gas,   carbon   dioxide   andhydrogen   pipelines   and   implications   for   future   infrastructure Koen   Schoots a , ∗ ,   Rodrigo   Rivera-Tinoco a ,   Geert   Verbong b ,   Bob   van   der   Zwaan a , c , d a EnergyresearchCenteroftheNetherlands(ECN),PolicyStudiesDepartment,Amsterdam,TheNetherlands b EindhovenUniversityofTechnology,DepartmentofIndustrialEngineering&InnovationSciences,Eindhoven,TheNetherlands c ColumbiaUniversity,LenfestCenterforSustainableEnergy,TheEarthInstitute,NewYorkCity,NY,USA d  JohnHopkinsUniversity,SchoolofAdvancedInternationalStudies,Bologna,Italy a   r   t   i   c   l   e   i   n   f   o  Articlehistory: Received23January2011Receivedinrevisedform21September2011Accepted29September2011Availableonline24October2011 Keywords: NaturalgasCarbondioxideHydrogenClimatecontrolPipelinecostsLearningcurves a   b   s   t   r   a   c   t The   construction   of    large   pipeline   infrastructures   for   CH 4 ,   CO 2  and   H 2  transportation   usually   consti-tutes   amajor   and   time-consuming   undertaking,   because   of    safety   and   environmental   issues,   legal   and(geo)political   siting   arguments,   technically   un-trivial   installation   processes,   and/or   high   investment   costrequirements.   In   this   paper   we   focus   onthe   latter   and   present   an   overview   of    both   the   total   costs   andcost   components   of    the   transmission   of    these   three   gases   via   pipelines.   Possible   intricacies   and   externalfactors   that   strongly   influence   these   costs,   like   the   choice   of    location   and   terrain,   are   also   included   in   ouranalysis.   Our   cost   breakdown   estimates   arebased   on   transportation   data   for   CH 4 ,which   we   adjust   forCO 2  and   H 2  in   order   to   account   for   the   specific   additional   characteristics   of    these   two   gases.   Our   mainfinding   is   that   the   economics   of    CH 4 ,   CO 2  and   H 2  transportation   through   pipelines   are   volatile.   Inpartic-ular   for   CH 4  andCO 2  the   overall   trend   seems   that   pipeline   construction   costs   have   not   decreased   overrecent   decades   or,   at   least,   that   possible   reductions   in   overall   costs   have   been   outshadowed   bythe   vari-ability   in   the   costs   of    key   inputs.   We   speculate   onthe   reasons   why   we   observe   limited   learning-by-doingeffects   and   expect   that   negligible   construction   cost   reductions   for   future   CH 4  and   CO 2  pipeline   projectswill   materialize.   Cost   data   of    individual   pipeline   projects   may   strongly   deviate   from   the   global   averagebecause   of    national   or   regional   effects,   such   as   related   to   varying   costs   of    labor   and   fluctuating   marketprices   of    components   like   steel.   We   conclude   that   only   in   an   optimistic   scenario   we   may   observe   learningeffects   for   H 2  pipeline   construction   activity   in   the   future,   but   there   are   currently   insufficient   datato   fullysupport   the   limited   evidence   for   this   claim,   so   that   the   uncertainty   of    this   prediction   for   now   remainslarge.©   2011   Elsevier   Ltd.   All   rights   reserved. 1.Introduction Naturalgas,carbondioxideandhydrogenmay   playakeyroleinestablishingasustainableenergysystem:naturalgasistheclean-estandleastcarbon-intensivefossilfuel;carbondioxidecaptureandstorage(CCS)cansignificantlyreducetheclimatefootprintofparticularlyelectricityproductionwithcoal,naturalgasandoilfuelledpowerplants;hydrogencanbeusedforfuellingzero-emissionvehicles.WhilethelattertwoareusuallytransportedinclosetopurestreamsofCO 2  andH 2 ,respectively,theformermayoftenconsist,whentransmitted,mostlybutnotexclusivelyofCH 4 .Thecompositionofnaturalgasatthewell-headcanvarysignifi-cantlybetweendifferentproductionfields.Usuallyitconsistsofamixtureofhydrocarbongases,carbondioxide,nitrogen,hydrogensulphide,oxygen,watervapourandtracesofother(rare)gases.It ∗ Correspondingauthor.Tel.:+31224564143;fax:+31224568339. E-mailaddress: schoots@ecn.nl(K.Schoots). typicallycontains70–90%methaneand0–20%otherhydrocarbonslikeethane,propane,butaneandpentane(NaturalGas,2009).The definitionwe   useisthatofrefined‘dry’naturalgas,whichmostlyconsistsofmethane.Intheremainderofthispaperwe   usetheterms‘methane’,‘naturalgas’and‘CH 4 ’interchangeably.Thedesignandconstructionofpipelinesforthetransportationofthesethreegasesisalengthyandsometimescomplexpro-cess,inwhichmanyfactorsmay   influencetheoverallcosts(CO 2 Europipe,2011;NaturalHy,2011).Theinvestmentcostsassoci-atedwiththetransmissionofCH 4 ,CO 2  andH 2 ,inparticularbypipeline,may   becomeanimportantfactorforthesuccessorfailureoftransformingpresentenergyproductionandconsumptionintoasustainableenergysystembasedoncleanfossilfueltechnologies.Inthispaperwethereforeinvestigateforthesegasesthecurrenttotalanddetailedbreakdownofpipelineconstructioncosts.Wenextinspectthesensitivityofoverallpipelineconstructioncoststofluctuationsincostcomponentssuchasmaterials,laborandright-of-way.Asacorollarytoouranalysiswegatherdataoncumu-lativeinstalledpipelinelengthtodate,aswellason(totaland 1750-5836/$–seefrontmatter©2011ElsevierLtd.Allrightsreserved.doi:10.1016/j.ijggc.2011.09.008  K.Schootsetal./InternationalJournalofGreenhouseGasControl5(2011)1614–1623 1615 component)costdevelopmentsinthepast,toinformbothpub-licpolicyandstrategicplanning,andinanattempttodevelopandevaluatelearningcurvesforpipelineconstructioncosts.Severalpublicationshaveassertedthatthereissignificantcostreductionpotentialforpipelineconstructionactivities.Forexam-ple,ZhaoandSchrattenholzer(2000)advocatedthatlearningcan bediscernedforthedevelopmentofinternationaltransmissionlinesofnaturalgas.YangandOgden(2007)haveextensivelydescribedtheconditionsunderwhichthecostsofH 2  distribution,includingviapipelines,canbeminimized.Onthecontrary,inthepresentpaperwearguethattheeconomicsofCH 4 ,CO 2  andH 2 transportationthroughpipelinesarevolatileandthatpipelinecon-structioncostshavenotdecreasedoverrecentdecadesor,atleast,thatpossiblereductionsinoverallcostshavebeendwarfedbythevariabilityinthecostsofkeyinputs.ThisassertionaffectstheclaimthatCCSsystemsmay   besubjecttosignificantcostreductions(IPCC,2005).Pipelinescanbesubdividedintwomaincategoriesaccordingtotheareaoverwhichtheyoperate:distributionpipelines(forshortlengths)andtransmissionpipelines(forlongdistances).Asmostinformationisavailableonthelattercategorywefocusinouranal-ysisontransmissionpipelines,whileintheremainderofthisarticlesometimesreferringtothemassimplypipelinesorlines.Whereverinthefollowingweusethenotion‘distribution’itisonlydonesoasasynonymof‘transportation’,notinassociationwiththewords‘pipelines’or‘networks’.Hencewedonotfurtherinspecttheotherimportantpipeliningsubject,ofmorelocalnetworksandrelativelyshort-distancedistribution,astheyhavebeenexten-sivelystudiedalready(see,notably,Dooleyetal.,2009;JohnsonandOgden,2010).InSections2–4wegivefor,respectively,CH 4 ,CO 2  andH 2  pipelinesanoverviewoftheirtotalconstructioncostsandbreakdowninmaincostcomponents,andextensivelydescribethehistoricdevelopmentsofthesecosts.InSection5we   assesswhetherwecandistinguishpotentialcostreductionsandmeaning-fullearningbehaviorfortotalpipelineconstructioncosts.Section6summarizesanddiscussesourmajorfindingsandprovidesacoupleofconclusionsforpublicpolicyandstrategicplanningpurposes. 2.TransportationofCH 4 ThecostsofcompletedCH 4  pipelineconstructionprojectshavebeenthoroughlyreportedinthe OilandGasJournal (OGJ:True,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003;TrueandStell,2004;Smithetal.,2005;Smith,2006,2007,2008,2009).Basedonthesesources,aswellaspublicationsbyCastelloetal.(2005),Gasunie(1963,1967,1968)andParker(2004),   weanalyzetheevo-lutionofCH 4 pipelineconstructioncostsinrecentdecades.Tomakealldatathroughoutthispapermutuallycomparable,weexpresscostsinUS$inouryearofreference2000,forallthreegases.Foreaseofexpositionwequoteconstructioncostsperkilometerof pipeline.Specificpipelinedesigncharacteristics,likeabovegroundorsubterranean,coveredoruncovered,trenchedortrench-less,aswellaschargesduetodifferencesinterrain,areeliminatedinourstudythroughanaveragingoutovermanypipelineprojects.We   circumventthecountry-dependencyofpipelinecostsbyonlyassessingconstructioncostsintheUS.Thefullcostsofgastransportationincludethecompressionsystem.Althoughcalculationsoftheoptimumcostlevelusuallyprescribetheuseofasmallerpipelinediameterandmorefre-quentinstallationofboosterstations,inpractice,constructionof trunkpipelinesystemsusuallyerronthesideofinstallingfewerboostersandusinglargerdiameterlinesthantheminimumcostoptionwouldsuggest.Thereasonforthisprobablyliesinopera-tionalissuesincludinglogisticsofgettingpowerandmaintenance Fig.1. Constructioncostsof30cmdiameter,onshoreCH 4  pipelinesbetween1977and2006.DatafromGasunieandOGJ. crewstoboosterstationsinremotelocations.Aswe   aremostlyinterestedintheconstructioncostsofpipelinesthemselves,ini-tialcompressorsandboosterstationsareexcludedfromourcostanalysis.  2.1.Constructioncosts Fig.1showsthedevelopmentofconstructioncostsintheUSforonshoreCH 4  pipelinesasfunctionoftimeforapipelinediame-terof30cm.   We   retrievedcostdataonseveraldifferentpipelinediametersshowingsimilartrends(vanderZwaanetal.,2011).For61and91cmdiameterpipelineswe   retrieveddataontotalcostscoveringatimeframefrom1964to2008,for76cmdiam-eterpipelinesfrom1967to2008,andfor20,30,41and51cmdiameterpipelinesfrom1976to2008(Gasunie,1963,1967,1968;True,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003;TrueandStell,2004;Smithetal.,2005;Smith,2006,2007,2008,2009).TheconstructioncostsreportedinOGJdistinguishbetweencostsformaterials,labor,right-of-wayandmiscellaneouscontributions.Miscellaneouscostsarethoseassociatedwithsurveying,engineer-ing,supervision,interest,administration,overhead,contingencies,regulatoryfeesandallowancesforfundsusedduringconstruction.Intotalweassessed1577projectsduringwhichatotalpipelinelengthof80,141kmwasconstructed.ThedetailofdatareportedinOGJallowsinvestigatingthedevelopmentofcostcomponentsseparatelybetween1976and2008.Comparingpipelineconstructioncostsbetweendifferentprojectsisoftendifficultasaresultoftheinfluenceterrainmayhaveonthesecosts.Thelocation,i.e.countryorregioninwhichapipelineisplaced,may   alsoaffectconstructioncostsconsiderably.Technicaldifficultiesassociatedwiththeplacementofpipelinesinlesseraccessibleterraintypicallycausecoststorise.Table1showstheextracharges,asquantifiedbytheIEA(2002),   thatpipelinebuildingmay   encounter.Thesechargesapplyinprinci-pletoanypipeline,regardlessofitssizeorthetypeofgasthatistransported.Inhighlyurbanizedlocalitieslikecities,pipeline  Table1 TerrainchargesforCH 4  pipelineconstruction.TerrainTerrainfactorHighurbanization+700kUS$(2000)Lowurbanization>50%mountainousland × 1.5<20%mountainousland × 1.3Cultivatedland  × 1.1 Jungle × 1.1Stonydesert × 1.1Woodedland  × 1.1Grassland × 1.0DatafromIEA(2002).  1616 K.Schootsetal./InternationalJournalofGreenhouseGasControl5(2011)1614–1623  Table2 CountryandregionchargesforCH 4  pipelineconstructioncosts.Country/regionLocationfactorUK × 1.2Australia/NewZealand  × 1.0Europe  × 1.0 Japan × 1.0US/Canada × 1.0EquatorialAfrica × 0.9MiddleEast × 0.9NorthAfrica  × 0.8SouthAmerica  × 0.8South-EastAsia(excl.Japan)  × 0.8China/CentralAsia × 0.7Indiansubcontinent × 0.7Russia × 0.7SouthAfrica  × 0.7DatafromIEA(2002). constructioncostscanberaisedbyasmuchas700kUS$(2000)/km–butsuchavaluemay   stronglydifferfromoneurbanconstructionprojecttoanother.FromtheOGJdatadepictedinFig.1weobserve thatconstructioncostsmay   inexceptionalcasesrisetosome1.5millionUS$(2000)/km(typicallyincities).Inlowurbanizedareaslikearablelandandforests,pipelineconstructioncostsshouldbeincreasedby10–50%withrespecttothecorrespondingcostsongrassland(seeTable1).Thecountryorregioninwhichapipelineislocatedmay   alsoinfluenceitsconstructioncostssignificantly.Buildingapipelineindevelopingcountriesisusuallylessexpensivethanindevelopedcountries,mostlyasaresultofwagedifferences.Right-of-waycostscanalsodifferbetweenstates:sincetheseareprimarilyrelatedtolegalandpermittingissues,theyarenotnecessarilyconnectedtoanation’slevelofdevelopment.TheIEA(2002)presentsoverall correctionfactorsformanycountriesandregionstoaccountforthesevariabilities.Thesenumbers,summarizedinTable2,express theimpactoflocationonpipelineconstructioncostswithrespecttoreferencecostsprevailingintheUS.ForthepurposeofthispaperweavoidedconstructioncostvariationsbetweencountriesasaresultofcurrencyexchangefluctuationsandinterpretationsbyonlyusingdataexpressedinUS$.ThedataweretrievedprimarilyrelatetoprojectsrealizedintheUS,andsomeinEurope,butallareexpressedinUS$.Currencycorrections,throughPurchasingPowerParities(PPPs)orMarketExchangeRates(MERs),arethusnotrequired.Forthepurposesofthispaper,inordertoreducetheeffectofterraincharges,weuseforeachpipelinediametercostdatainwhichthisfactorisaveragedoutoverallprojectsinagivenyear.Insomeyears,thenumberofpipelineprojectsreportedforaparticulardiameterisonlyoneortwo.We   considerthesecasesinsufficient,astheterrainchargecannotbeaveragedouteffec-tively.We   havethereforeexcludedthesedatapointsfrommostofouranalysis,aswedidforFig.1.Asthisfiguredemonstrates, overthepast30–40yearsthecostsofpipelineconstructionhavenotcomedown.Rather,severalcostcomponentsarevolatileandtotalconstructioncostsevenshowaslightlyupwardtrend(oratbestfluctuatearoundamoreorlessstablemean).We   determinethecompositionofconstructioncostsforeachpipelinediame-terbyaveragingboththeannuallyreportedtotalcostsandthecostcontributionsfromeachofthecomponentsbetween1998and2008.Inthiscasewedonotexcludeyearswithonlyoneortwopipelineconstructionprojects.Fig.2depictstheresultfor30cmdiameterpipelines,whichdemonstratetherelativesizeof eachofthefourmaincostshares.Whenappliedtootherpipelinediametersaswell,thisconstructioncostsanalysisshowsthatthetotalcostsforpipelineconstruction(indicatedbelowthepiedia-gram)increasewithpipelinediameter.Itturnsoutthattherelationbetweenpipelinediameterandtotalcostsisclosetolinear.Our Fig.2. Averagecostbreakdownfor30cmdiameter,onshoreCH 4  pipelineconstruc-tionbetween1998and2008.DatafromGasunieandOGJ. totalcostdatacomparewellwiththepipelineconstructioncostsof713kUS$/kmreportedbyParker(2004),   anddeviatebyabout10%fromthe786kUS$/kmlevelreportedbyCastelloetal.(2005),bothfor30cmdiameterpipelines.WhencomparingFig.2topie diagramsfromotherpipelinediameters,thecontributionofmate-rialcostsincreaseswithpipelinediameter,whilelaborcoststendtodecrease.Thiseffect,however,ispartiallyshieldedbyscatteringinright-of-wayandmiscellaneouscosts.Inordertobetterexplainthedevelopmentoftotalpipelinecon-structioncosts,wefurtherinvestigatetheevolutionofthefourmaincostcategories.Foreachcostcomponent,ofallpipelinediameters,we   determineanannualcostindexrelativetothecom-ponent’scostsin2000(whichwesetatlevel100,inarbitraryunits).Thesefourindicesarebasedoncoststowhichtheinflationcorrec-tionwasapplied.Thefourindicesasfunctionoftimereflectthedevelopmentofcostsforeachofthefourcomponents.Sinceweremovedtheinformationontheabsolutevalueofthecostcom-ponents,wecanaveragetheevolutionofindividualcostsharesoverdifferentpipelinediameters.Theresultingcostindicesformaterials,labor,right-of-wayandmiscellaneouscostsareshowninFig.3a–d. ThematerialcostindexiscomparedwiththeProducerPriceIndex(PPI)forironandsteel(USDOL,2009).Especiallyfrom1990 onwards,thesetwoindependentlydeterminedindicesshowover-allagoodmatch.Deviationsbetweenthemmay   originatefromthedurationandtimingofcontractsbetweensteelproducers,pipelinemanufacturersandconstructioncompanies,aswellashedgingstrategiesbyeachoftheseparties.AsonecanconcludefromFig.3a,theevolutionofmaterialcostsoverthelast20yearscanmainlybeattributedtomarketdevelopmentsforthepriceofsteel.ThecostindicesforlaborandmiscellaneouscontributionsarecomparedtotheUSconsumerprice(i.e.US$inflation)index(USDOL,2009).As canbeseenfromFig.3b,themeanlaborcostindexalmostper- fectlyfitstheevolutionofthispriceindex,whichshowsthatUSpipelinesectorwagesonaveragecloselyfollowUS$inflation.Manyofthecomponentsthattogetherformtheclassofmiscellaneouscostsstronglydependonlaborcosts.ItisthereforenotsurprisingthatthiscategoryalsoneatlyfollowsthedevelopmentoftheUS$inflationindex(whichwejustdemonstratedtobeagoodindica-torforthelevelofwages).Right-of-waycostsstronglydependonlandprices,whichincludefeessetbylocalgovernments,legalcostsandpermitprices.We   thereforecompareright-of-waycoststotheaggregatedUSlandpriceindex(LincolnInstitute,2010).Theright- of-waycostindexisanindicatorreflectinglocalconditions,whichmay   playaroleindedevelopmentofspecificpipelineprojectssuchaspossiblepublicresistance.Localconditionsmay   ofcoursedifferfromoverallnationalconditionsreflectedintheaggregateindex.Thismay   explaintheapparentdeviationsoftheright-of-waycostindexfromtheaggregateUSlandpriceindexdepictedinFig.3c,particularlyduringthelastdecade.Overall,however,we  K.Schootsetal./InternationalJournalofGreenhouseGasControl5(2011)1614–1623 1617 Fig.3. CH 4  pipelineconstructioncostcomponentindices(solidlines)matchedwithpriceindices(dashedlines):USproducerpriceindexforironandsteelfor(a),USconsumerpriceindexfor(b)and(d)andaggregateUSlandpriceindexfor(c). thinkthereexistsfaircorrelationbetweenthetwo   indices.We   thusarguethat,likeforthelasttwodecades,totalpipelineconstructioncostsarelikelytocontinuefollowingthesumofvolatilemarketpricesforeachofitscostcomponents–costreductionsattributabletolearningareunlikely,assofarnosucheffectshavebeenobserved.Instead,becauseweincludedthesameinflationcorrectiontoallcostdata,weobserveanequalstructuralriseincostsforallcostcomponents.Thiseffectmay   havethreereasons(Kramer,2009).First,itmay   beattributedtograduallytighteningenvironmentalandsafetyrequirementsforpipelines.Asecondpossiblecauseforstructuralpriceincreasesmay   bethatthetenderingofpipelinecon-structionprojectsisnotentirelypricedriven,butalsoinfluencedbythetrustinvestorshaveinparticularcontractorsforbeingcapableofsuccessfullyfinishingprojects.Athirdreasonmightbethatthelimitednumberofcontractorsinthefieldofpipelineconstructioniscapableofexercisingmarketpower,aslongastheystaywithinreasonablelimitsofpriceincreases.  2.2.Cumulativepipelineconstruction PipelineconstructionbeganintheUSwiththefirstoilfindsinthemid   19thcentury.Sincewehavenotbeenabletofindannu-allyconstructedpipelinemileagedatabeforethe1980s(ortotaloperationalpipelinemileagedatabeforethe1970s),we   cannotreconstructareliablevalueforthecumulativelengthofdeployedCH 4  pipelinesintheUS(vanderZwaanetal.,2011).Forexample, Castelloetal.(2005)claimthatbytheendof20031,750,000kmofpipelineexistedintheUS,ofwhich525,000kmweretransmis-sionpipelines;OGJreportsonly303,000km.   We   expectthatforpipelinesconstructedelsewhereintheworld(likeinAfrica,Asia,EuropeandcountriesoftheformerUSSR)itwouldbesimilarlydiffi-culttocalculatefiguresforcumulativeinstalledcapacity.Forsomeoftheseregions,alackofavailabledocumentationmeansthatitmay   bemoreintricatetoderivesuchnumbers. 3.TransportationofCO 2 ThetransportationofCO 2  distinctivelydiffersfromthatofCH 4 .ThephasediagramofCO 2  showsthatbeyondapressureof74barandatemperatureof31 ◦ C,i.e.thecriticalpoint,CO 2  becomesasupercriticalfluid.Aspipelinesareusuallyoperatedatpressuresbetween100and150bar,thetransportationofCO 2  moreresem-blesthatofaliquidthanagas.OneoftheconsequencesforCO 2 pipelinedesignisthat,aftertheinitialcompression,boostersta-tionsalongthepipelinearenotequippedwithgascompressorsbutfluidpumps.Still,likeforCH 4 ,CO 2  pipelinescanbeconstructedfromlowalloysandcarbonsteel,providedthatthetransportedgasisdry.Whenthehumiditybecomeshigh,CO 2  may   dissolveincondensedwaterandcanreact,ascarbonicacid,withitsenvironmentandthuscorrodethepipelinewall.Pipelinecorrosioncanbepreventedbykeepingtherelativehumidityofthegasbelow60%andthusavoid-ingcondensationofmoisture(seee.g.IPCC,2005).Inpractice,extra measuresliketheapplicationofprotectivelayerslikepolymerorcorrosion-resistantalloycoatingsarerequired(accompaniedwithanadditionalpricetag)topreventthequalityofthepipelinemetalsfromdeterioratingtooquickly(IPCC,2005).GaseousCO 2  isdenserthanair.Incaseofapipelineseepageitthereforeaccumulatesontheground,beforeitslowlydiffusesintotheambientatmosphere.ThefactthatCO 2  resultingfrompipelineleakagelocallyreplacesoxygen,orreducestheoxygenconcentra-tion,posesserioussafetyconcerns,especiallywhenleakageoccurs Fig.4. Constructioncostsfor30cmdiameterCO 2  pipelines.
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks