Documents

Maps between non-commutative spaces.pdf

Description
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 356, Number 7, Pages 2927–2944 S 0002-9947(03)03411-1 Article electronically published on November 18, 2003 MAPS BETWEEN NON-COMMUTATIVE SPACES S. PAUL SMITH Abstract. Let J be a graded ideal in a not necessarily commutative graded k-algebra A = A 0 ⊕A 1 ⊕· · · in which dim k A i ∞for all i. We show that the map A →A/J induces a closed immersion i : Proj nc A/J →Proj nc A between the non-co
Categories
Published
of 18
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  TRANSACTIONS OF THEAMERICAN MATHEMATICAL SOCIETYVolume 356, Number 7, Pages 2927–2944S 0002-9947(03)03411-1Article electronically published on November 18, 2003 MAPS BETWEEN NON-COMMUTATIVE SPACES S. PAUL SMITH Abstract.  Let  J   be a graded ideal in a not necessarily commutative graded k -algebra  A  =  A 0 ⊕ A 1 ⊕···  in which dim k  A i  < ∞ for all  i . We show that themap  A → A/J   induces a closed immersion  i  : Proj nc A/J   → Proj nc A  betweenthe non-commutative projective spaces with homogeneous coordinate rings  A and  A/J  . We also examine two other kinds of maps between non-commutativespaces. First, a homomorphism  φ  :  A  →  B  between not necessarily commu-tative  N -graded rings induces an affine map Proj nc  B  ⊃  U   →  Proj nc  A  froma non-empty open subspace  U   ⊂ Proj nc B . Second, if   A  is a right noetherianconnected graded algebra (not necessarily generated in degree one), and  A ( n ) is a Veronese subalgebra of   A , there is a map Proj nc A  →  Proj nc A ( n ) ; weidentify open subspaces on which this map is an isomorphism. Applying thesegeneral results when  A  is (a quotient of) a weighted polynomial ring producesa non-commutative resolution of (a closed subscheme of) a weighted projectivespace. 1.  Introduction This paper concerns maps between non-commutative projective spaces of theform Proj nc A . Before summarizing our main results we define the relevant terms.Following Rosenberg [8, p. 278] and Van den Bergh [13], a non-commutative space  X   is a Grothendieck category  Mod X  . A  map  g  :  Y   → X   between two spacesis an adjoint pair of functors ( g ∗ ,g ∗ ) with  g ∗  :  Mod Y   → Mod X   and  g ∗ left adjointto  g ∗ . The map  g  is  affine  [8, page 278] if   g ∗  is faithful and has a right adjoint.For example, a ring homomorphism  ϕ  :  R  →  S   induces an affine map  g  :  Y   →  X  between the affine spaces defined by  Mod Y   :=  Mod S   and  Mod X   :=  Mod R .Let  k  be a field. An  N -graded  k -algebra  A  is  locally finite  if dim k  A i  < ∞  for all i . The non-commutative projective space  X   with homogeneous coordinate ring  A is defined by Mod X   :=  GrMod A/ Fdim A (see Section 2), andProj nc A  := ( Mod X, O X ) , where  O X  is the image of   A  in  Mod X  . Thus Proj nc A  is an enriched quasi-schemein the language of [13]. Let  Y   be another non-commutative projective space withhomogeneous coordinate ring  B . A map  f   : Proj nc B  → Proj nc A  is a map  f   :  Y   → X   such that  f  ∗ O X  ∼ = O Y   . Received by the editors September 18, 2002 and, in revised form, April 29, 2003.2000  Mathematics Subject Classification.  Primary 14A22; Secondary 16S38.The author was supported by NSF grant DMS-0070560. c  2003 American Mathematical Society 2927  2928 S. PAUL SMITH When  A  is a commutative  N -graded  k -algebra we write Proj A  for the usualprojective scheme. We will always view a quasi-separated, quasi-compact scheme X   as a non-commutative space by associating to it the enriched space ( Qcoh X, O X ).The rule  X   → ( Qcoh X, O X ) is a faithful functor. Summary of results.  The main results in this paper are Theorems 3.2, 3.3, 4.1, and Proposition 4.8.A map  g  :  Y   → X   is a  closed immersion  if it is affine and the essential image of  Mod Y   in  Mod X   under  g ∗  is closed under submodules and quotients. Theorem 3.2shows that a surjective homomorphism  A → A/J   of graded rings induces a closedimmersion  i  : Proj nc A/J   → Proj nc A . The functors  i ∗ and  i ∗  are the obvious ones(see the proof of  3.2). It seems to be a folklore result that  i ∗ is left adjoint to  i ∗ , butwe could not find a proof in the literature so we provide one here. Several peoplehave been aware for some time that this is the appropriate intuitive picture, but,as far as I know, no formal definition of a closed immersion has been given and sono explicit proof has been given.If   A  is a graded subalgebra of   B , commutative results suggest there should bea closed subspace  Z   of   Y   = Proj nc B  and an affine map  g  :  Y  \ Z   →  Proj nc A .Theorem 3.3 establishes such a result under reasonable hypotheses on  A  and  B . Infact, that result is set in a more general context, namely a homomorphism  φ  :  A → B  of graded rings. Corollary 3.4 then says that if   φ  :  A  →  B  and  B  is a finitelypresented left  A -module, then there is an affine map  g  : Proj nc B  → Proj nc A . Thisis a (special case of a) non-commutative analogue of the commutative result that afinite morphism is affine.If   A  is a quotient of a commutative polynomial ring, and  A ( n ) is the gradedsubring with components ( A ( n ) ) i  =  A ni , then there is an isomorphism of schemesProj A  ∼ = Proj A ( n ) . Verevkin [12] proved that Proj nc A  ∼ = Proj nc A ( n ) when  A  isno longer commutative, but is connected and generated in degree one. Theorem4.1 shows that when  A  is not required to be generated in degree one, there is stilla map Proj nc A  →  Proj nc A ( n ) , and Proposition 4.8 describes open subspaces onwhich this map is an isomorphism.The results here are modelled on the commutative case, and none is a surprise.In large part the point of this paper is to make the appropriate definitions sothat results from commutative algebraic geometry carry over verbatim to the non-commutative setting. Thus we formalize and make precise some of the terminologyand intuition in papers like [2] and [7]. In Example 4.9 we show how our results apply to a quotient of a weighted poly-nomial ring to obtain a birational isomorphism  g  : Proj nc A → X   = Proj A , where X   is a commutative subscheme of a weighted projective space. It can happen that X   is singular whereas Proj nc A  is smooth. Thus we can view Proj nc A → Proj A  assomething like a non-commutative resolution of singularities. Furthermore, in thissituation  g ∗ g ∗  ∼ = id.We freely use basic notions and terminology for non-commutative spaces fromthe papers [9], [10], and [13]. 2.  Definitions and preliminaries Throughout this paper we assume that  A  is a  locally finite N -graded algebra  over afield  k . Thus  A  =  A 0 ⊕ A 1 ⊕··· , and dim k A i  < ∞ for all  i . The  augmentation ideal m of   A  is  A 1 ⊕ A 2 ⊕··· . If   A 0  is finite dimensional and  A  is right noetherian, then it  MAPS BETWEEN NON-COMMUTATIVE SPACES 2929 follows that dim k  A i  < ∞ for all  i  because  A ≥ i /A ≥ i +1  is a noetherian  A/ m -module.We write  GrMod A  for the category of   Z -graded right  A -modules, and define Tails A  :=  GrMod A/ Fdim A, where  Fdim A  is the full subcategory consisting of direct limits of finite dimensional A -modules. Equivalently,  Fdim A  consists of those modules in which every elementis annihilated by a suitably large power of   m . We write  π  for the quotient functor GrMod A → Tails A  and  ω  for its right adjoint.The  projective space with homogeneous coordinate ring  A  is the space  X   definedby  Mod X   :=  Tails A . We write Proj nc A  = ( Mod X, O X ), where  O X  denotes theimage of   A  in  Tails A .A  closed subspace  Z   of a space  X   is a full subcategory  Mod Z   of   Mod X   that isclosed under submodules and quotient modules in  Mod X   and such that the inclusionfunctor  i ∗  :  Mod Z   → Mod X   has both a left adjoint  i ∗ and a right adjoint  i ! .Two spaces are  isomorphic  if their module categories are equivalent. Hence amap  Y   → X   is a closed immersion if and only if it is an isomorphism from  Y   to aclosed subspace of   X  .The  complement  X  \ Z   to a closed subspace  Z   is defined by Mod X  \ Z   :=  Mod X/ T , the quotient category of   Mod X   by the localizing subcategory  T  consisting of those X  -modules  M   that are the direct limit of modules  N   with the property that  N   hasa finite filtration  N   =  N  n  ⊃  N  n − 1  ⊃ ··· ⊃  N  1  ⊃  N  0  = 0 such that each  N  i /N  i − 1 is in  Mod Z  . Because  T  is a localizing category, there is an exact quotient functor  j ∗ :  Mod X   →  Mod X  \ Z  , and its right adjoint  j ∗  :  Mod X  \ Z   →  Mod X  . The pair(  j ∗ ,j ∗ ) defines a map  j  :  X  \ Z   → X  . We call it an  open immersion .We sometimes write  Mod Z  X   for the category  T  and call it the category of   X  -modules  supported on  Z  .Let  f   :  Y   → X   be a map. If   f  ∗  is faithful, then the counit id Y   → f  ! f  ∗  is monicand the unit  f  ∗ f  ∗  → id Y   is epic. Watt’s Theorem for graded modules.  Let  A  and  B  be  Z -graded  k -algebras.We recall the analogue of Watt’s Theorem proved by Del Rio [3, Proposition 3]that describes the  k -linear functors  GrMod A → GrMod B  that have a right adjoint.A bigraded  A - B -bimodule is an  A - B -bimodule M   =  (  p,q ) ∈ Z 2  p M  q such that  A i .  p M  q .B j  ⊂  i +  p M  q + j  for all  i,j,p,q   ∈  Z . Write  ⊗  for  ⊗ k . If   L  is agraded right  A -module, we define L  ¯ ⊗ A M   :=  q ∈ Z ( L  ¯ ⊗ A M  ) q , where ( L  ¯ ⊗ A M  ) q  is the image of    p ( L −  p ⊗  p M  q ) under the canonical map  L ⊗ M   → L ⊗ A  M  . This gives  L  ¯ ⊗ A M   the structure of a graded right  B -module; it is a  B -module direct summand of the usual tensor product  L ⊗ A  M  .If   N   is a graded right  B -module, we defineHom B ( M,N  ) := { f   ∈ Hom Gr B ( M,N  ) | f  (  p M  ∗ ) = 0 for almost all  p } .  2930 S. PAUL SMITH This is made into a graded right A -module by declaring that deg f   =  p  if   f  ( i M  ∗ ) = 0for all  i  = −  p . Hence Hom B ( M,N  )  p  is naturally isomorphic to Hom Gr B ( −  p M  ∗ ,N  ),and there is a natural isomorphismHom B ( M,N  ) =   p Hom Gr B ( −  p M  ∗ ,N  ) . The usual adjoint isomorphism between Hom and  ⊗  then induces an isomorphismHom Gr B ( L  ¯ ⊗ A M,N  ) ∼ = Hom Gr A ( L, Hom B ( M,N  )) , (2-1)showing that  − ¯ ⊗ A M   :  GrMod A → GrMod B  is left adjoint to Hom B ( M, − ). Theorem 2.1  (Del Rio [3]) .  Let   A  and   B  be graded   k -algebras, and   F   :  GrMod A → GrMod B  a   k -linear functor having a right adjoint. Then   F   ∼ =  − ¯ ⊗ A M  , where   M  is the bigraded   A - B -bimodule  M   =   p ∈ Z F  ( A (  p )) with homogeneous components   p M  q  =  F  ( A (  p )) q .If   F   also commutes with the twists by degree, then   F   is given by tensoring with a graded   A - B -bimodule, say   V   =   n V  n . The corresponding   M   in this case is  M   =  V  (  p )  with   p M  q  =  V  (  p ) q .The left   A -action on   M   is given by declaring that   x ∈ A i  acts on   p M  ∗  as   F  ( λ x ) ,where   λ x  :  A (  p ) → A (  p  + i )  denotes left multiplication by   x . 3.  Maps induced by graded ring homomorphisms Throughout this section we assume that  A  and  B  are locally finite  N -gradedalgebras over a field  k .We consider the problem of when a homomorphism  φ  :  A  →  B  of graded ringsinduces a map  g  : Proj nc B  → Proj nc A  and, if it does, how the properties of   g  aredetermined by the properties of   φ .Associated to  φ  is an adjoint triple ( f  ∗ ,f  ∗ ,f  ! ) of functors between the categoriesof graded modules. Explicitly,  f  ∗ = −⊗ A B ,  f  ∗  = −⊗ B  B A  is the restriction map,and  f  ! =   p ∈ Z  Hom Gr B ( B ( −  p ) , − ). We wish to establish conditions on  φ  whichimply that these functors factor through the quotient categories in the followingdiagrams: GrMod B  f  ∗ −−−−→  GrMod A π   π Tails B  Tails A GrMod B  f  ∗ ,f  ! ←−−−−  GrMod A π   π Tails B  Tails A Lemma 3.1.  Let   A  and   B  be Grothendieck categories with localizing subcategories  S ⊂ A  and   T ⊂ B . Let   π  :  A → A / S  and   π  :  B → B / T  be the quotient functors, and let   ω  and   ω  be their right adjoints. Consider the following diagram of functors: A  F  −−−−→  B π  π  A / S B / T .
Search
Tags
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks