# Maths PMR Form 3 Note

Description
note
Categories
Published

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
NOTES AND FORMULAEPMR MATHEMATICS 1. SOLID GEOMETRY (a)Area and perimeter Triangle  A  = 21 ×  base ×  height = 21 bh Trapezium  A = 21 (sum of two  parallel sides) ×  height = 21 ( a + b) ×    h CircleArea = π r  2 Circumference = 2 π r  Sector Area of sector = ! θ   ×   π r  2 #ength of arc = ! θ     ×  2 π r  C\$linder Cur%e surface area = 2 π rh SphereCur%e surface area = & π r  2 (b)Solid and 'olumeCube' =  x   ×    x   ×    x  =  x  Cuboid' = l    ×   b   ×   h  = lbh C\$linder  V   = π   r  2 h Cone V   = 1 π   r  2 h Sphere V   = & π r   \$ramid V   = 1 ×  base area ×  heightrism V   = Area of cross section ×  length2. CIRCLE THEOREM Angle at the centre = 2 * angle at the circumference  x = 2y Angles in the same segment are e+ual  x = y Angle in a semicircle ∠  ACB  = , o Sum of opposite angles of a c\$clic +uadrilateral = 1- o a + b  = 1- o The eterior angle of a c\$clic +uadrilateral is e+ual to the interior opposite angle. b = a Angle between a tangent and a radius = , o ∠ OPQ  = , o The angle between atangent and a chord is e+ual to the angle in the alternate segment.  x = y Note prepared by Mr. Sim KY  /f   PT   and  PS   are tangents to a circle0  PT = PS  ∠ TPO  = ∠ SPO ∠ TOP   = ∠ SOP  . POLYGON (a)The sum of the interior angles of a n sided pol\$gon= ( n   2) ×  1- o (b)Sum of eterior angles of a pol\$gon = ! o (c)ach eterior angle of a regular n sided pol\$gon = n ! (d)3egular pentagon ach eterior angle = 42 o ach interior angle = 1 - o (e)3egular heagon ach eterior angle = ! o ach interior angle = 12 o (f)3egular octagonach eterior angle = &5 o ach interior angle = 15 o &. FACTORISATION (a)  xy + xz = x(y + z) (b)  x 2  – y 2  = (x – y)(x + y) (c)  xy + xz + ay + az = x (y + z) + a (y + z)= (y + z)(x + a) (d)  x 2  6 &  x  6  = (  x  6 )(  x  6 1)5. EXPANSION OF ALGERBRAIC EXPRESSIONS (a)2 2   ! 6    = 2 2   5 7 (b)( 6 ) 2  =  2  6 2 *  *  6  2  =  2  6 ! 6 ,(c)(  \$)( 6 \$) =  2  6 \$  \$  \$ 2  =  2   \$ 2 !. LAW OF INDICES (a)  x m   ×    x   n  =  x m 6 n (b)  x m   ÷    x n  =  x m  n (c)(  x m ) n  =  x  m ×  n (d)  x - n  = n  x 1 (e)  n  x x n = 1 (f)  mn  x x nm )( = (g)  x 0  = 14. ALGEBRAIC FRACTION press 2 11 2! k k  k  −− as a fraction in its simplest form.Solution 22 11 1(1 )2!! k k k k  k k  − × − −− = = 2222 1 &1 2(5)5!!! k k k k k k k k k  − + − − −= = = -. LINEAR EQUATION 8i%en that 15 (n 6 2) = n  20 calculate the %alue of n.Solution 15 (n 6 2) = n  25 * 15 (n 6 2) = 5(n  2)n 6 2 = 5n  1 2 6 1 = 5n  n2n = 12n = !,. SIMULTANEOUS LINEAR EQUATIONS (a)Substitution 9ethod\$ = 2  5 ::::::::(1)2 6 \$ = 4 ::::::::(2)Substitute (1) into (2)2 6 2  5 = 4& = 12 = Substitute  =  into (1)0\$ = !  5 = 1(b)limination 9ethodSol%e 6 2\$ = 5 ::::::::::(1)   2\$ = 4 ::::::::::(2)(1) 6 (2)0 & = 120 = Substitute into (1), 6 2\$ = 52\$ = 5  , = 7&\$ = 721 . ALGEBRAIC FORMULAE 8i%en that ;  (m 6 2) = m0 epress m in terms of ;.Solution;  (m 6 2) = m;  m  2 = m;  2 = m 6 m = &mm = 2& k   − Note prepared by Mr. Sim KY  11. LINEAR INEQUALITIES 1.Sol%e the linear ine+ualit\$   2 < 1 .Solution  2 < 1  < 1 6 2 < 12 < &2.#ist all integer %alues of  which satisf\$ the linear ine+ualit\$ 1   6 2 > &Solution1   6 2 > &Subtract 201 7 2   6 2  2 > &  2 71   > 2 ∴   = 710 0 1.Sol%e the simultaneous linear ine+ualities &p    p and p 6 2 ≥   12  pSolution&p    p&p  p  p   p  1 p 6 2 ≥   12  p* 202p 6 & ≥  p2p  p ≥  7&p ≥  7& ∴  The solution is 7&  p  1.12. STATISTICS 9ean = sum of datanumber of data 9ean = sum of(fre+uenc\$ data)sum of fre+uenc\$ × 0 when the data has fre+uenc\$.9ode is the data with the highest fre+uenc\$9edian is the middle data which is arranged in ascending?descending order.1.0 0 &0 !0 -9ean = &!-&.-5 + + + += 9ode = 9edian = &2.&0 50 !0 -0 ,0 1 0 there is no middle number0 the median is the mean of the two middle numbers.9edian = !-2 + = 42 . A pictograp  uses s\$mbols to represent a set of data. ach s\$mbol is used to represent certain fre+uenc\$ of the data.@anuar\$ebruar\$9arch3epresents 5 boo;s.A !ar cart  uses horizontal or %ertical bars to represent a set of data. The length or the height of each bar represents the fre+uenc\$ of each data.&.A pi cart  uses the sectors of a circle to represent the fre+uenc\$?+uantiti\$ of data.A pie chart showing the fa%ourite drin;s of a groupof students.1. TRIGONOMETRY   TBA SB CA1&. GRAPHS OF FUNCTIONS  (i) #inear function. (ii)Duadratic function. (iii) Cubic function. (i%) 3eciprocal    y   = a x   15. GEOMETRICAL CONSTRUCTIONS Note prepared by Mr. Sim KY E F&5F! Fsin EG 2221 = 2 cos E 2 2221 = Gtan E 1 = 1H adIacent side θ  h\$potenuse opposite side  A BC   tan θ   = sideadIacent sideopposite  sin  θ   = h\$potenusesideopposite  cos  θ   = h\$potenusesideadIacent  y  =  x    y  =    x    y  =  x 2    y  =   x 2    y  =  x 3    y  =   x 3    x y O  x y O  y   = : a x  1!. SCALE DRAWINGS Scale of a drawing = The length of drawingThe length of the actual obIect 14. LINES AND ANGLES 1-. COORDINATES 1. Jistance ( ) ( ) 212212 \$\$  −−−= 2. 9idpoint0 ( )        ++= 22 2121  yy,xxy,x 1,. TRANSFORMATIONS 1. Translation  x y    ÷    2. 3eflection  . 3otation (i) centre of rotation (ii) angle of rotation (iii) direction of rotation : eample ,  cloc;wise ? ,  anticloc;wise &. nlargement(i) centre of enlargement (ii) scale factor k   = obIectof sideingcorrespondtheof length imageof sideaof length k  2  = area of imagearea of obIect Note prepared by Mr. Sim KY  x y x = y !  = !ab x + y = #0 \$

Jul 23, 2017

#### Cumulus x Help

Jul 23, 2017
Search
Similar documents

View more...
Tags

Related Search