# ModeloDeNavegacion.pdf

Description
42 3. Orthogonal Projection and Kalman Filter we have .... v Pk,k ==(1 - GkCk)Pk,k-l(I - GkCk) T.... + (I - .. GkCk)Pk,k-l(GkCk) ==(1 - OkCk)Pk,k-l . T (3.23) Therefore, combining (3.13), (3.16), (3.18), (3.21), (3.22) and (3.23), together with Po,o == II x o - xOloll~ == Var(xo) , (3.24) we obtain the Kalman filtering equations which agree with the ones we derived in Chapter 2. That is, we have xklk == xklk' xklk-l == xklk-l and Ok == Gk as follows: Po,o == Var(xo) Pk,k-l == Ak-lP
Categories
Published

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
3.25 42 3. OrthogonalProjection andKalman Filter we have ....v   T Pk,k == 1 - GkCk)Pk,k-l I - GkCk) +  I - GkCk)Pk,k-l GkCk) == 1 - OkCk)Pk,k-l .  3.23 Therefore,combining 3.13 , 3.16 , 3.18 , 3.21 , 3.22 and  3.23 ,togetherwith Po,o   x o- xOloll~   Var(xo) , (3.24) we obtain the Kalmanfilteringequationswhichagreewith the ones we derivedin Chapter 2. That is, we have xklk   xklk xklk l   xklk l and Ok   Gk asfollows: Po,o   Var(xo) Pk,k-l   Ak-lPk-l,k-lAl-l + fk l k lfr l Gk   Pk,k-l C  : (CkPk,k-1C-: + Rk)-l Pk,k   I - GkCk)Pk,k-l xOlo   E(xo) xklk l   Ak-1Xk-llk-l xklk   xklk l + Gk(Vk - CkXk1k-l)k   1,2, .... Of course, the Kalmanfilteringequations 2.18 derivedinSection2.4for the generallineardeterministic/stochasticsystem { Xk l   AkXk + BkUk + rk~k Vk   CkXk + DkUk+ 1k canalsobeobtainedwithout the assumptionon the invertibilityof the matrices Ak, VarC~k,j etc.  cf. Exercise3.6 . 3.5 Real-Time Tracking Toillustrate the applicationof the Kalmanfilteringalgorithmdescribedby 3.25 ,letusconsider an exampleofreal-timetracking.Let x t , 0 :::; t < 00, denote the trajectory inthree-dimensionalspaceofaflyingobject,where t denotes the timevariable cf.Fig.3.1 .Thisvector-valuedfunction is discretizedbysampling and quantizingwithsamplingtime h > 0 to yield Xk   x kh , k   0,1,···.  3.5Real-Time  fracking 43  ig 3.1.   ,   -- x t - I I ã x O) Forpracticalpurposes, x t can be assumed to havecontinuousfirst and secondorderderivatives,denotedby x t and x t , respectively,so that forsmallvaluesof h, the position and velocityvectors Xk and Xk   x kh aregovernedby the equations { h·1h2 .. ~k+l = ~k + ~k + 2 Xk Xk+l = Xk + hXk , where Xk   x kh and k = 0,1,···. In addition,in many applicationsonly the position vector of the flyingobjectisobserved at each time instant,so that Vk = CXk with C =   0 0] ismeasured. In viewofExercise3.8, to facilitateourdiscussion we onlyconsider the trackingmodel  3.26  44 3. OrthogonalProjectionandKalmanFilter to be zero-meanGaussianwhitenoisesequencessatisfying: E ~k = 0, E( 1k) = 0, E ~k~; = Qk 6 kl, E( 1k 1l) = rk6 kl, E xo~; = 0, E(Xo 1k) = 0, where Qk is anon-negativedefinitesymmetric matrixand rk > 0 forall k. It is furtherassumed that initialconditions E xo) and Var xo) aregiven.Forthistrackingmodel, the Kalmanfilteringalgorithmcanbespecifiedasfollows:Let Pk := Pk,k and let P[i, j] denote the  i, j th entryof P. Then we have Pk,k-l[l,l] = Pk-l[l,  ] + 2hPk-l[1,  ] + h2Pk_l[1,  ] + h2 Pk-l[2, 2] h 4 + h 3 Pk-l[2, 3] + 4Pk-1[3, 3] + Qk-l[l, 1], Pk ,k-l[1,2] = Pk,k-l[2, 1] 3h 2 = Pk-l[l,  ] + hPk-l[l,  ] + hPk-l[2,  ] + TPk-1[2 3] h 3 + 2Pk-1[3, 3] + Qk-l[l, 2], Pk,k-l[2,2] = Pk-l[2,  ] + 2hPk-l[2,  ] + h2 Pk-l[3,  ] + Qk-l[2, 2], Pk,k-l[1,3] = Pk,k-l[3, 1] h 2 = Pk-1 [1 ] + hP k-1 [2 ] + 2Pk-1[3,  ] + Qk-l[l, 3], Pk,k-l [2 3] = Pk,k-l [3 2] = Pk-l[2,  ] + hPk-l[3,  ] + Qk-l[2, 3], Pk,k-l [3 3] = Pk-l [3 3] + Qk-l [3 3] , with Po,o = Var xo) ,  with :Kala = E(xo).  xer ises Exercises 45  3.27 3.1.Let A =f. 0 be anon-negativedefinite and symmetric constant matrix.Show that trA > o.  Hint:Decompose A as A = BB T with B  f 0.) 3.2.Let j-I ej = Cj Xj - Yj-I) = Cj (Xi - L Pi-l,iVi) ,  1.=0 where Pj I i aresomeconstantmatrices.UseAssumption2.1 to show that forall / ? j. 3.3.Forrandomvectors WO, , W r, define Y(Wo, , w r  r y= LPiWi, i=O Po, ...  Pr constant matrices}. Let j-I Zj = Vj - Cj L Pj-l iVi i=O be definedasin 3.4 and ej = Ilzjll lzj Show that 3.4.Let j-I Yj-I = L Pj-l iVi i=O and j-I Zj = Vj - Cj L Pj-l iVi . i=O Show that j = 0,1, . ,k - 1.

Jul 23, 2017

#### Urn Nbn Si Doc Nwvm56oe

Jul 23, 2017
Search
Similar documents

View more...
Tags

## Physics & Mathematics

Related Search
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks