# Notes

Description
math
Categories
Published

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
Math 150 Exam 1 Review Sheet Function:  A function is a mapping that assigns each element  x  in a set  D , called the domain,to  exactly one  element in a set  R , called the range. Domain and Range:  Given a function  f  ( x ) , the domain is the set of values which can beplugged in for  x  (common restrictions to the domain include values that result in zerodenominators or negatives under even radicals). The range is the set of all possible answers( y -values). Composition of Functions:  The composition of   f   and  g  is given by  ( f  ◦ g )( x ) =  f  ( g ( x )) .The domain includes all  x  in the domain of   g  such that  g ( x )  is in the domain of   f  . In practice,we ﬁnd the domain by ﬁnding the domain of the inside function and of the ﬁnal result, andthen taking the intersection of these two. Exponential Functions:  The function  f  ( x ) =  a x with  a >  0  has the following generalshapes: a >  1 a <  1     (0 , 1) One-to-One Function:  A function  f   is 1:1 no two  x -values are assigned to the same  y -value,ie.  f  ( x 1 )  =  f  ( x 2 )  whenever  x 1   =  x 2 . Inverse Function:  If   f   is a 1:1 function with domain  A  and range  B , there is an inversefunction  f  − 1 ( x )  with domain  B  and range  A  deﬁned by any of the following:i)  f  − 1 ( y ) =  x ⇔ f  ( x ) =  y ;ii)  f  − 1 ( f  ( x )) =  x  for every  x  in  A  and  f  ( f  − 1 ( x )) =  x  for every  x  in  B ;iii)  f  − 1 ( x )  is the reﬂection of   f  ( x )  through the line  y  =  x . Steps to ﬁnd  f  − 1 :  (1) Rewrite  f  ( x )  as  y ; (2) Switch all  x ’s and  y ’s; (3) Solve for  y ;(4) Rewrite  y  as  f  − 1 ( x )  Logarithmic Functions:  The  log  function is deﬁned as the inverse of the exponentialfunction, and therefore satisﬁes  log a  x  =  y  ⇔ a y =  x  and has domain  (0 , ∞ )  and range ( −∞ , ∞ ) . Since  log  and exponentials are inverses, we have  log a ( a x ) =  x  and  a log a  x =  x . If the base of the logarithm is  e , we write  ln x , called the natural logarithm. Limit as  x  approaches  a :  We write  lim x → a  f  ( x ) =  L  if as  x  gets closer to  a  from either sideof   a  (but unequal to  a ),  f  ( x )  becomes arbitrarily close to  L . If   f  ( x )  becomes arbitrarily largeor small as  x  approaches  a , we write  lim x → a  f  ( x ) = ∞ and  lim x → a  f  ( x ) = −∞ , respectively.For the limit to exist, the limits from the left ( x < a ) and the right ( x > a ) must be equal, ie. lim x → a −  f  ( x ) = lim x → a +  f  ( x ) . Otherwise, the limit does not exist. Evaluating  lim x → a  f  ( x ) :  For polynomials and rational functions in which  a  is in the domain,we can evaluate the limit by simply replacing  x  by  a , ie.  lim x → a  f  ( x ) =  f  ( a ) . For rationalfunctions that have vertical asymptotes at  a , we must consider the signs as the denominatorapproaches 0.* Deﬁnition of Limit:  We say  lim x → a  f  ( x ) =  L  if for every  ǫ >  0 , there is  δ >  0  such that 0  < | x − a | < δ  ⇒| f  ( x ) − L | < ǫ . Continuity:  A function  f   is continuous at  a  if   lim x → a  f  ( x ) =  f  ( a ) . The three types of discontinuities are holes (removable discontinuities), gaps (jump discontinuities), and verticalasymptotes (inﬁnite discontinuities).* The Intermediate Value Theorem:  Suppose that  f   is continuous on the interval  [ a,b ]  and f  ( a )  =  f  ( b ) . Then for every number  N   between  f  ( a )  and  f  ( b ) , there is a number  c  satisfying a < c < b  and  f  ( c ) =  N  . Limits at Inﬁnity:  We say  lim x →∞ f  ( x ) =  L  if as  x  grows larger,  f  ( x )  becomes arbitrarilyclose to  L . The line  f  ( x ) =  L  is then a horizontal asymptote. The deﬁnition for  x approaching −∞ is similar. Shortcuts for Computing Limits at Inﬁnity:  Given a rational function  f  ( x ) =  p ( x ) /q  ( x ) ,we have the following rules:i)  lim x →±∞ f  ( x ) = 0  if   degree (  p )  < degree ( q  ) ;ii)  lim x →±∞ f  ( x ) =  Ratio of Leading Coefficients  if   degree (  p ) =  degree ( q  ) ;iii)  lim x →±∞ f  ( x ) = ±∞ if   degree (  p )  > degree ( q  ) , where the resulting sign must bedetermined based on the behavior of the leading terms of   p  and  q  .  Asymptotes:  For a rational function, vertical asymptotes (of the form  x  =  k ) occur at thezeros of the denominator, provided there is no cancellation of the corresponding factor. Forexample,  f  ( x ) =  x − 2 x 2 − 4  =  x − 2( x − 2)( x +2)  =  1 x +2  has a vertical asymptote only at  x  = − 2 .Horizontal asymptotes are given by  y  = lim x →±∞ f  ( x ) .* Slopes and Derivatives:  The slope of the tangent line to the function  f  ( x )  at  x  =  a  is givenby the derivative  f  ′ ( a ) . This is formally computed as f  ′ ( a ) = lim h → 0 f  ( a + h ) − f  ( a ) h  .* The Derivative as a Function:  The derivative of the function  f  ( x )  is formally computed as f  ′ ( x ) = lim h → 0 f  ( x + h ) − f  ( x ) h  . Average and Instantaneous Velocity  If position is given by the function  s ( t ) , theinstantaneous velocity at any time  t  is given by the function  v ( t ) =  s ′ ( t ) .*Formula will be provided.

Jul 23, 2017

#### Project Management Professional (PMP) Training &NEW

Jul 23, 2017
Search
Similar documents

View more...
Tags

Related Search