Documents

TCC14 Crack Width - 2002-2005

Description
crack width check as per euro code
Categories
Published
of 20
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
   Project Spreadsheets to EC2 Client Point No 2 in concourse beam  Made by Date Page  Location Grid line 1rmw 7-Nov-14 202 FLEXURAL CRACK WIDTH CALCULATION to BS EN 1992-1 : 2004  Checked Revision Job No  Originated from TCC14.xls v3.1 on CD © 2002-2005 BCA for RCC RECTANGULAR chg-FB625  LEGEND INPUT ck  =40MParea o tenson stee, s  =8500 yk  =500MPa =940mm =500mmrea o compresson stee, s 2  =1000mm h  =1000mm d 2  =60mmQP moment, M   =2093KNmMaxmum tension bar spacing, S  =100mm Age at cracking =28daysax tenson ar a, eq   =25mmCement type =N(S, N, or R)Short term or long term ?L(S or L) reep actor, φ  =2.6Cover to A s , c  =38mm  CALCULATIONS modulus of elasticity of concrete = 22[(f  ck +8)/10] . E cm  = 35.2GPamoduli of elasticity of steel E s  = 200.0GPaModular ratio α e  = 20.44mean concrete strength at cracking f  cm,t  = 48.00MPamean concrete tensile strength f  ct,eff   = 3.51MPauncracked neutral axis depth [bh²/2+(α e -1)(A s d+A s2 d 2 )]/[bh+(α e -1)(A s +A s2 )] x u   = 593.71mmuncracked 2 nd  moment of area bh³/12+bh(h/2-x)²+(α e -1)[A s (d-x)²+A s2 (x-d 2 )²] I u   = 71413mm 10cracking moment = f  ct I/(h-x) M cr  = 616.74kNm< 2093 kNm → section is CRACKED fully cracked neutral axis depth ( -A s α e -A s2 (α e -1)+[{A s α e +A s2 (α e -1)}²+2b{A s α e d+A s2 d 2 (α e -1)}] ½ ) /b x c   = 512.10mm concrete stress = M/[bx(d-x/3)/2+(α e -1)A s2 (x-d 2 )/x(d-d 2 )] σ c  = 18.425MPa stress in tension steel = σ c ∙α e (d-x)/x σ s  = 314.7MPaeffective tension area = min[2.5(h-d), (h-x)/3, h/2]b - A s A c,eff   = 66500mm 2  A s /A c,eff  ρ p,eff   = 0.1278 max final crack spacing = min[1.3/(h-x),3.4c+0.17Ø/ρ p,eff  )] s r,max  = 160.8mmaverage strain for crack width calculation ε sm - ε cm  = 1375.3 μstrain CALCULATED CRACK WIDTH W k   = 0.221 mm The Concrete Centre   Project Spreadsheets to EC2 Client Point No 2 in concourse beam  Location Grid line 2 FLEXURAL CRACK WIDTH CALCULATION to BS EN 1992-1 : 2004 Originated from TCC14.xls v3.1 on CD © 2002-2005 BCA for RCC CO LEGEND INPUT ck  =35MParea o ens yk  =500MPa w  =300mmrea o compresso =450mm f   =2170mmaxmum enson ar f   =125mmax enson momen, M   =114.2KNmShort term o  Age at cracking =14daysCo Cement type =R(S, N, or R)reep acor, φ  =2.0  CALCULATIONS modulus of elasticity of concrete = 22[(f  ck +8)/10] . moduli of elasticity of steelModular ratiomean concrete strength at crackingmean concrete tensile strengthuncracked neutral axis depth[b w h²/2+(b f  -b w )h f  ²/2+(α e -1)(A s d+A s2 d 2 )]/[b w h+(b f  -b w )h f  +(α e -1)(A s +A s2 )]uncracked 2 n  moment of areab w h³/12+b w h(h/2-x)²+(b f  -b w )h f  ³/12+(b f  -b w )h f  (x-h f  /2)²+(α e -1)[A s (d-x)²+A s2 (x-d 2 )²]cracking moment = f  ct I/(h-x)  < 114.2 kNmfully cracked x (within flange)concrete stress (x within flange) stress in tension steel = σ c ∙α e (d-x)/xeffective tension area = min[2.5(h-d), (h-x)/3, h/2]b w  - A s  A s /A c,eff  max final crack spacing = min[1.3/(h-x),3.4c+0.17Ø/ρ p,eff  )]average strain for crack width calculation CALCULATED CRACK WIDTH   Made by Date Page rmw 7-Nov-14 33 TEE IN Checked Revision Job No PRESSION chg-FB625  n see, A s  =1473 =399.5mm n see, A s 2  =236 2  =33mm spacng, =87mm ar a, Ø eq   =25mm r long term ?L(S or L)er to A s , c  =38mm E cm  = 34.1GPa E s  = 200.0GPa α e  = 17.61 f  cm,t  = 39.58MPa f  ct,eff   = 2.95MPa  x u   = 138.21mm  I u   = 6653mm 10 M cr  = 63.05kNm The Concrete Centre
Search
Tags
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks