Essays

Block Copolymer-Based Nanomaterials For Energy Conversion and Storage

Description
Block Copolymer-Based Nanomaterials For Energy Conversion and Storage Jörg Werner & Uli Wiesner Materials Science & Engineering CFES Annual Conference, Jan. 25, 2013 The Wiesner
Categories
Published
of 25
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
Block Copolymer-Based Nanomaterials For Energy Conversion and Storage Jörg Werner & Uli Wiesner Materials Science & Engineering CFES Annual Conference, Jan. 25, 2013 The Wiesner Research Group Organic (Polymer)-Inorganic Hybrids with Nanoscale Structures Aim: Understand the fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of self-assembled functional hybrid nanomaterials with novel properties. Targeted applications (with collaborators) Energy conversion & storage Clean water Diagnostics & Nanomedicine Overview Introduction Block copolymer (BCP) self-assembly BCP directed porous inorganic nanostructures BCP directed nanomaterials for energy conversion and storage Thermodynamics of BCP Self-Assembly A B Gibbs free energy of mixing : G k T B m = f N A A ln f A + f N B B ln f B + f A f B χ AB where f: volume fraction of B N : degree of polymerization χ: Florry-Huggins interaction parameter χ A + B T G. Fredrickson et al. Macromol. 39, 2449 (2006) BCPs as SDAs for Inorganic Nanoparticles inorganic nanoparticles Advantages: - multiple morphologies - ordered rather than disordered structures - tailored nanostructures through tailored block copolymer synthesis Merging polymer science with inorganic /solid-state chemistry allows study of structure property correlations in energy conversion & storage devices C. Orilall& U.W., Chem. Soc. Rev.40 (2011), 520 Nanomaterials Synthesis: EISA block copolymer Component synthesis + inorganic nanoparticles Dissolution in solvents Evaporation Induced Self-Assembly: doctor bladed film, casting, dip/spin coating, etc. M.Templin. U.W. et al., Science 278(1997), 1795 BCPs Structuring Amorphous Inorganic Materials Merging Polymer Science with Solid-State Materials aluminosilicates high temperature non-oxides Science 278(1997), 1795 JACS 126(2004), 14708 BCPs Structuring Crystalline Inorganic Materials Moving from polycrystalline to single crystal nanostructures polycrystalline transition metal oxides polycrystalline metals single crystal semiconductors & metals 20nm Nat. Mater. 7(2008), 222 Science 320(2008), 1748 Science 330 (2010), 214 Accessibility of co-continuous Cubic Phases Moving from AB diblock copolymers to ABC triblock terpolymers From 2-6 vol% to 4-14 vol% Porous Cubic Networks from ABC Triblock Hybrids Double Gyroid Networks silicate Bates, Epps, Muller, Gruner & Steiner TiO 2 Single Gyroid Network (chiral!) Nb 2 O 5 M. Stefik M. Stefik, U.W. et al. Chem. Mater. 21(2009), 5499 M. Stefik, U.W. et al. J. Mater. Chem. 22 (2012), 1078 Field Theory Approach to BCP-NP Assembly Understanding long-& short range interactions: SCFT + DFT Helmholtz Free Energy Molecular Interactions 0 F = F + F χ Molecular Conformation Entropy +F Short-range Enthalpic Interactions HS C + F +L Hard-sphere Interactions Escobedo& Hennig Long-range Coulomb Interactions KaHur Predicting NP superstructures in BCPs Predicting ABC triblock CP NP structures K. Hur, U.W.et al., J. Chem. Phys. 133 (2010), K. Hur, U.W.et al. Nano Letters 12 (2012), 3218. BCPs Derived Nanomaterials in Energy Moving from fundamental studies all the way to devices Li transport in BCP nanostructures first BCP directed Gyroid solar cell nanomaterials for high current density devices : Lithium ion ~10nm : Charge transport direction Science 305 (2004), 1598 Nano Letters 9 (2009), 2807 Nat. Mater. 11(2012), 460 Moving from Diblocks to Triblocks as SDAs Working with the alternating gyroid structure Steiner & Snaith triblock C220 5 % power conversion efficiencies in ssdscs, outperforming NP based Grätzel cells P. Docampo, M. Stefik, U. Steiner, U.W., H. Snaithet al., Adv. Ener. Mater. 2(2012), 676 Energy Conversion and Storage Snaith & Steiner double gyroid hybrid solar cell Abruna, DiSalvo fuel cells & Lee batteries JACS 131 (2009), 9389 ACS Nano 6 (2012), 6870 Macromol. Chem. Phys. 212 (2011), 383 Adv. Funct. Mater. 21 (2011), 4349 Nano Letters 9 (2009), 2807 Adv. Ener. Mater. 2 (2012), 676 Needs for battery and fuel cell electrodes (1) High electrical conductivity (2) Thermal/oxidative stability (3) Hierarchical porosity (4) Small volume fraction of electron conductor Nanostructured Porous Multicomponent Materials Library of sol-gel materials with high control over structure& comp. DiSalvo, Grätzel& Zwanziger S. Warren Most metals Amino & hydroxy acids, peptides Sol-gel compatibility S. Warren. U.W. et al., Nature Mater. 11 (2012), 460 Nanostructured Metal Percolation Networks Opens applications in high current-density devices High thermal/oxidative stability Palladium-based film 500 C Air, H 2 (or N 2, Ar) also worked for Pt, Cu, Ni, Co, Ag, Pb, Bi Palladium-based films High conductivities 1,000 S/cm Increasing metal content S. Warren. U.W. et al., Nature Mater. 11 (2012), 460 Hierarchical Materials from Self-Assembly Compatibility with BCPs, colloidal crystal templating & Stöber Pd + 1-methyl L-aspartate+ PI-b-PEO Pd + L-isoleucine Gd + Diprotin-A S. Warren. U.W. et al., Nature Mater. 11 (2012), 460 Formic Acid Oxidation on PtPb-Decorated Mesoporous Niobia Derived from BCs Abruna, DiSalvo& Wiesner Chris Orilall synergistic effects? M. C. Orilall, UW et al., JACS131(2009), 9389 Structure Control in Multicomponent Nanomaterials Lee One-pot approach for direct formic acid fuel cell(dfafc) materials OMCS: ordered mesoporous carbon/silica J. Shim, J. Lee, U.W. et al., ACS Nano 6 (2012), 6870 Characterization of the Final Materials 4.5 wt.% PtPb 4.5 wt.% PtPb 9 wt.% PtPb HR-TEM FFT J. Shim, J. Lee, U.W. et al., ACS Nano 6 (2012), 6870 Mesoporous LIB Anode Composites (a) CCM-TiO 2 -C (b) Meso-LTO-C J. Lee, U.W. et al., Macromol. Chem. Phys.212(2011), 383 E. Kang, J. Lee, U.W. et al., Adv. Funct. Mater. 21(2011), 4349 Conclusions & Outlook 1.) Powerful design criteria are emerging for structure control of nanostructured porous hybrid materials from work with block copolymers as structure directing agents. 2.) Holy grail of block copolymer directed inorganic single crystal nanostructure epitaxy has been achieved resulting in porous thin film materials. 3.) Strong emphasis on simple one-pot -type synthesis approaches in order to enable translation to applications. 4.) Promising first results when nanomaterials are applied to energy conversion and storage problems. MPI-P Graduate/Postdoc Students D. Babski, S. De Paul, M. Langela H. Leist, D. Maring, S. Renker, V. Schaedler, M. Schoeps, M. Templin R. Ulrich, T. Volkmer, Y. Zhang Collaborators H. Spiess(MPI-P), A. Baiker(ETH Zurich) M. Elimilech(Yale), F. Escobedo (Cornell) B.K. Cho (Dankook, Korea), J. Lee (Pohang, Korea) E. Hoek(UCLA), G. Floudas(F.O.R.T.H.), S. Maier (Imperial, UK), R. Hennig(Cornell) M. Noginov(NSU), V.M. Shalaev(Purdue) T. Kuroda (Waseda, Jap.) J. Zwanziger(Dalhousie, Ca) M. Bradbury (MSKCC, NYC), H. Snaith(Oxford, UK) B. Baird (Cornell), G. Coates (Cornell), S. Nunes(KAUST) F. DiSalvo(Cornell), L. Fetters (Cornell), D. Muller (Cornell), S. Gruner(Cornell), U. Steiner (Cambridge, UK), M. Thompson (Cornell) W. Webb (Cornell), W. Zipfel(Cornell) Acknowledgements Cornell Graduate/Postdoc Students H. Arora, C. Burk, A. Burns, P. Boldrighini, M. Chavis, B.-K. Cho, C. Cowman, R. Dorin, J. Drewes, P. Du, D. Fayol, C. Garcia, Y. Gu, J. Gutmann, E. Herz, J. Hughes, K. Hur, S. Iyer, A. Jain, M. Kamperman, P. Kim, Y. Kim, R. Kogler, B. Lechêne, J. Lee, Z. Li, K. Ma, S. Mahajan, C. Orillal, H. Ow, R. Qi, T. Seetuwang, H. Sai, P. Simon, H. Sai, J. Song, S. Robbins, M. Stefik, Y. Sun, T. Swisher, K. Tan, S. Wang, S. Warren, J. Werner, L. Yeghiazarian, Y. Zhang Funding Max Planck Society BASF DFG, BMBF Chrysalis biomat IBM Faculty Partnership MS&E Department Altria Group CCMR, CFCI, NBTC, General Motors NYS CAT Biotech Hercules NSF, DOE, NIH, DHS, DOD (Army) KAUST-CU Thank You!
Search
Similar documents
View more...
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x