Documents

Solution Manual Optical Fiber Communications 4th Edition by Keiser

Description
Link download full: https://testbankservice.com/download/solution-manual-optical-fiber-communications-4th-edition-by-keiser/ Relate keywords optical fiber communications 4th edition solution manual optical fiber communications 4th edition solution solution manual optical fiber communications 4th edition gerd keiser mcgraw hill fiber-optic communication systems 4th edition answers optical fiber communication 4th edition by gerd keiser solution manual optical fiber communications keiser 4th edition solution manual download solution gerd keiser optical fiber communications 4th edition pdf
Categories
Published
of 16
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
    Link Download Full :https://testbankservice.com/download/solution-manual-optical-fiber-communications-4th-edition-by-keiser  SOLUTION MANUAL FOR OPTICAL FIBER COMMUNICATIONS 4TH EDITION BY GERD KEISER Gerd Keiser, Optical Fiber Communications , McGraw-Hill, 4 th  ed., 2011 Problem Solutions for Chapter 2 2.1 E   1 00co s  2  1 0 8  t   3 0     e x     2 0co s  2  1 0 8 t   5 0     e y     4 0co s  2  1 0 8  t   2 10     e z   2.2   The general form is: y = (amplitude) cos(  t - kz) = A cos [2  (  t - z/  )]. Therefore (a) amplitude = 8  m (b) wavelength: 1/   = 0.8  m -1  so that   = 1.25  m (c)     = 2  (2) = 4   (d) At time t = 0 and position z = 4  m we have y = 8 cos [2  (-0.8  m -1 )(4  m)] = 8 cos [2  (-3.2)] = 2.472 2.3   x1 = a1 cos (  t -  1) and x2 = a2 cos (  t -  2)  Adding x 1  and x 2  yields x 1  + x 2  = a 1  [cos  t cos  1  + sin  t sin  1 ] + a 2  [cos  t cos  2  + sin  t sin  2 ] = [a 1  cos  1  + a 2  cos  2 ] cos  t + [a 1  sin  1  + a 2  sin  2 ] sin  t Since the a's and the  's are constants, we can set a 1  cos  1  + a 2  cos  2  = A cos  (1) a 1  sin  1  + a 2  sin  2  = A sin  (2)    provided that constant values of A and  exist which satisfy these equations. To verify this, first we square both sides and add: 1     A 2  (sin 2     + cos 2    ) = a 2 2  1    cos 2  1  1  sin + 2 2   cos 2  2    + 2a 1 a 2   (sin    1   sin    2 a 2  sin  2 or  A   = a 2   a 2 + 2a a cos (  -   ) 1 2 1 2 1 2 Dividing (2) by (1) gives tan   = a 1 sin    a 2 sin  1 2 a cos    a cos  1 2 1 2 Thus we can write x = x 1  + x 2  = A cos   cos  t + A sin 2.4 First expand Eq. (2.3) as E y = cos (  t - kz) cos   - sin (  t - kz) sin  E 0 y Subtract from this the expression E x cos   = cos (  t - kz) cos  E 0 x to yield E y - E x cos   = - sin (  t - kz) sin  E 0 y E 0x + cos  1  cos  2 )   sin  t = A cos(  t -  )   (2.4-1) (2.4-2) Using the relation cos2    + sin2    = 1, we use Eq. (2.2) to write sin 2  (  t - kz) = [1 - cos 2  (  t - kz)] = E 1   2   x  E    0x  (2.4-3) Squaring both sides of Eq. (2.4-2) and substituting it into Eq. (2.4-3) yields 2     E y E 0 y   E x E 0x  2 cos    =   E  x  E  0x 2         sin2   Expanding the left-hand side and rearranging terms yields  2  2        x  + y  - 2 x   y  E 0x    E 0y    E 0x    E 0y 2.5   Plot of Eq. (2.7). 2.6   Linearly polarized wave. 2.7  Air: n = 1.0 33  33  Glass 90       cos   = sin2   (a) Apply Snell's law n 1  cos  1  = n 2  cos  2 where n 1  = 1,  1  = 33  ,   and  2 = 90   - 33   = 57    n 2 = cos 33  = 1.540 cos 57  (b) The critical angle is found from n glass sin    glass = n air sin    air with  air  = 90   and nair  = 1.0   critical  = arcsin 1 = arcsin 1 = 40.5  n  g lass 1.540 3
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x