Book

Solutions Manual for Trigonometry 8th Edition by McKeague IBSN 9781305652224

Description
Full download http://goo.gl/y6extn Solutions Manual for Trigonometry 8th Edition by McKeague IBSN 9781305652224 8th Edition, McKeague, Solutions Manual, Trigonometry, Turner
Categories
Published
of 60
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Transcript
  © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.  Chapter 2 Page 55 Problem Set 2.1 Chapter 2 Right Triangle Trigonometry 2.1 Definition II: Right Triangle Trigonometry EVEN SOLUTIONS 2 . Using Definition II and Figure 8, we would refer to a  as the side opposite  A , b  as the side adjacent to  A , and c  as the hypotenuse. 4 . a . cosine (ii) b . cosecant (iii) c . cotangent (i) 6 . Using the Pythagorean Theorem, first find a : a 2  8 2  17 2 a 2  64   289 a 2  225 a  15  Using a  = 15, b  = 8, and c = 17, write the six trigonometric functions of  A : sin  A   ac  1517cos  A   bc   817tan  A   ab  158csc  A   ca  1715sec  A   cb  178cot  A   ba   815   8 . Using the Pythagorean Theorem, first find c : 5 2  2 2  c 2 25  4   c 2 c 2  29 c   29  Using a  = 5, b  = 2, and c   29 , write the six trigonometric functions of  A : sin  A   ac   529   5 2929cos  A   bc   229   2 2929tan  A   ab   52csc  A   ca   295sec  A   cb   292cot  A   ba   25   10 . Using the Pythagorean Theorem, first find c : 5 2   11   2  c 2 25  11  c 2 c 2   36 c   6   Solutions Manual for Trigonometry 8th Edition by McKeague IBSN 9781305652224 Full Download: http://downloadlink.org/product/solutions-manual-for-trigonometry-8th-edition-by-mckeague-ibsn-978130565222 Full all chapters instant download please go to Solutions Manual, Test Bank site: downloadlink.org  © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.  Chapter 2 Page 56 Problem Set 2.1 Using a  = 5, b   11 , and c  = 6, write the six trigonometric functions of  A : sin  A   ac   56cos  A   bc   116tan  A   ab   511   5 1111csc  A   ca   65sec  A   cb   611   6 1111cot  A   ba   115   12 . Using the Pythagorean Theorem, first find a : a 2   3 2   4 2 a 2   9   16 a 2   7 a    7  Using a    7 , b  = 3, and c = 4, find the three trigonometric functions of  A : sin  A    ac   74cos  A    bc   34tan  A    ab   73   Now use the Cofunction Theorem to find the three trigonometric functions of  B : sin  B    cos  A    34cos  B    sin  A    74tan  B    cot  A    ba   37   3 77   14 . Using the Pythagorean Theorem, first find c : 3 2  1 2  c 2 9  1  c 2 c 2  10 c   10  Using a  = 3, b  = 1, and c   10 , find the three trigonometric functions of  A : sin  A   ac   310   3 1010cos  A   bc   110   1010tan  A   ab   31   3   Now use the Cofunction Theorem to find the three trigonometric functions of  B : sin  B  cos  A   110   1010cos  B  sin  A   310   3 1010tan  B  cot  A   ba   13   16 . Using the Pythagorean Theorem, first find c : 1 2   5   2   c 2 1   5    c 2 c 2   6 c    6  Using a  = 1, b    5 , and c    6 , find the three trigonometric functions of  A : sin  A    ac   16   66cos  A    bc   56   306tan  A    ab   15   55   Now use the Cofunction Theorem to find the three trigonometric functions of  B : sin  B    cos  A    56   306cos  B    sin  A    16   66tan  B    cot  A    ba   5    © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.  Chapter 2 Page 57 Problem Set 2.1 18 . Using the Pythagorean Theorem, first find c :  x 2   x 2   c 2 c 2   2  x 2 c    2  x  Using a  =  x , b  =  x , and c    2  x , find the three trigonometric functions of  A : sin  A    ac   x 2  x   12   22cos  A    bc   x 2  x   12   22tan  A    ab   x x  1   Now use the Cofunction Theorem to find the three trigonometric functions of  B : sin  B    cos  A    12   22cos  B    sin  A    12   22tan  B    cot  A    ba   x x  1   20 . The coordinates of point  B  are  B  8,6   . Using the Pythagorean Theorem, first find c : 6 2   8 2   c 2 36   64    c 2 c 2  100 c   10  Using a  = 6, b  = 8, and c  = 10, find the three trigonometric functions of  A : sin  A    ac   610   35cos  A    bc   810   45tan  A    ab   68   34   22 . Since b    c , cb  1 . Since sec      cb  1 , it is impossible for sec      12 . 24 . Since b  c , cb  1  and can be as large as possible. Since sec      cb , sec    can be as large as possible. 26 . Using the Cofunction Theorem, cos70  sin20  . 28 . Using the Cofunction Theorem, cot22   tan68  . 30 . Using the Cofunction Theorem, csc  y  sec 90   y   . 32 . Using the Cofunction Theorem, sin 90   y     cos  y . 34 . Complete the table, using the ratio identity sec  x    1cos  x :  x  cos  x  sec  x 0   1 130   3223   2 3345   2222   260   12290   0 undefined   36 . Simplifying the expression: 5sin 2 60    5 32      2   5 34  154   38 . Simplifying the expression: cos 3 60    12      3   18   40 . Simplifying the expression: sin60  cos60    2   32   12      2   3  12      2   4  2 34   2   32   ⋅  © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.  Chapter 2 Page 58 Problem Set 2.1 42 . Simplifying the expression: sin45  cos45    2   12   12      2   0 2  0   44 . Simplifying the expression: tan 2 45  tan 2 60   1 2   3   2  1  3   4   46 . Simplifying the expression: 6cos  x    6cos30    6 ฀  32   3 3   48 . Simplifying the expression:  2sin 90   y      2sin 90  45       2sin45    2 ฀  22    2   50 . Simplifying the expression: 5sin2  y  5sin 2 ฀ 45      5sin90   5 ฀ 1  5   52 . Simplifying the expression: 2cos 90   z      2cos 90  60      2cos30    2 ฀  32   3   54 . Finding the exact value: csc30    1sin30    112  2   56 . Finding the exact value: sec60    1cos60    112   2   58 . Finding the exact value: cot 30    cos30  sin30   3212   3   60 . Finding the exact value: csc45    1sin45    112   2   62 . Finding the exact value: sec90    1cos90    10, which is undefined   64 . Finding the exact value: cot0    cos0  sin0    10, which is undefined   66 . First find a  using the Pythagorean Theorem: 3.68 2  b 2   5.93 2 b 2   5.93 2  3.68 2 b 2   21.6225 b   4.65   Now find sin  A  and cos  A : sin  A   ac   3.685.93   0.62 cos  A   bc   4.655.93   0.78  Using the Cofunction Theorem: sin  B  cos  A   0.78 cos  B  sin  A   0.62   68 . First find c  using the Pythagorean Theorem: 13.64 2  4.77 2  c 2 c 2   208.8025 c  14.45   Now find sin  A  and cos  A : sin  A   ac  13.6414.45   0.94 cos  A   bc   4.7714.45   0.33  Using the Cofunction Theorem: sin  B  cos  A   0.33 cos  B  sin  A   0.94    © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.  Chapter 2 Page 59 Problem Set 2.1 70 . Since CG    CD    3 , using the Pythagorean Theorem: ( CG ) 2   ( CD ) 2   (  DG ) 2 3 2   3 2   (  DG ) 2 9    9    (  DG ) 2 (  DG ) 2  18  DG    18    3 2   Now use the Pythagorean Theorem with    DGE  : (  DG ) 2   ( GE  ) 2   (  DE  ) 2 3 2   2   3 2   (  DE  ) 2 18    9    (  DE  ) 2 (  DE  ) 2   27  DE     27    3 3   Now, let    represent the angle formed by diagonals  DE   and  DG . Therefore: sin      GE  DE    33 3   13   33cos      DG DE    3 23 3   23   63   72 . Let CG    CD    x , using the Pythagorean Theorem: ( CG ) 2   ( CD ) 2   (  DG ) 2  x 2   x 2   (  DG ) 2 (  DG ) 2   2  x 2  DG    2  x 2   2  x   Now use the Pythagorean Theorem with    DGE  : (  DG ) 2   ( GE  ) 2   (  DE  ) 2 2  x   2   x 2   (  DE  ) 2 2  x 2   x 2   (  DE  ) 2 (  DE  ) 2   3  x 2  DE     3  x 2   3  x   Now, let    represent the angle formed by diagonals  DE   and  DG . Therefore: sin      GE  DE    x 3  x   13   33cos      DG DE    2  x 3  x   23   63   74 . Using the distance formula:  x   1   2   2    5   2   13   2  x   1   2   9   13  x   1   2   4  x   1   2,2  x    1,3  
Search
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x